University Physics Volume 1
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
bartleby

Concept explainers

Textbook Question
Book Icon
Chapter 13, Problem 4CQ

It was stated that a satellite with negative total energy is in a bound orbit, whereas one with zero or positive total energy is in an unbounded orbit. Why zero or positive total energy is in an unbounded orbit. Why is this true? What choice for gravitational potential energy was made such that this is true?

Blurred answer
Students have asked these similar questions
m C A block of mass m slides down a ramp of height hand collides with an identical block that is initially at rest. The two blocks stick together and travel around a loop of radius R without losing contact with the track. Point A is at the top of the loop, point B is at the end of a horizon- tal diameter, and point C is at the bottom of the loop, as shown in the figure above. Assume that friction between the track and blocks is negligible. (a) The dots below represent the two connected blocks at points A, B, and C. Draw free-body dia- grams showing and labeling the forces (not com ponents) exerted on the blocks at each position. Draw the relative lengths of all vectors to reflect the relative magnitude of the forces. Point A Point B Point C (b) For each of the following, derive an expression in terms of m, h, R, and fundamental constants. i. The speed of moving block at the bottom of the ramp, just before it contacts the stationary block ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 s
Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…

Chapter 13 Solutions

University Physics Volume 1

Ch. 13 - Check Your Understanding Consider the density...Ch. 13 - Action at a distance, such as is the case for...Ch. 13 - In the law of universal gravitation, Newton...Ch. 13 - Must engineers take Earth’s rotation into account...Ch. 13 - It was stated that a satellite with negative total...Ch. 13 - It was shown that the energy required to lift a...Ch. 13 - One student argues that a satellite in orbit is in...Ch. 13 - Many satellites are placed in geosynchronous...Ch. 13 - Are Kepler’s laws purely descriptive, or do they...Ch. 13 - In the diagram below for a satellite in an...Ch. 13 - As an object falls into a black hole, tidal forces...Ch. 13 - The principle of equivalence states that all...Ch. 13 - As a person approaches the Schwarzschild radius fo...Ch. 13 - Evaluate the magnitude of gravitational force...Ch. 13 - Estimate the gravitational force between two sumo...Ch. 13 - Astrology makes much of the position of the...Ch. 13 - A mountain 10.0 km from a person exerts a...Ch. 13 - The International Space Station has a mass of...Ch. 13 - Asteroid Toutatis passed near Earth in 2006 at...Ch. 13 - (a) What was the acceleration of Earth caused by...Ch. 13 - (a) Calculate Earth’s mass given the acceleratioln...Ch. 13 - (a) What is the acceleration due to gravity on the...Ch. 13 - (a) Calculate the acceleration due to gravity on...Ch. 13 - The mass of a particle is 15 kg. (a) What is its...Ch. 13 - On a planet whose radius is 1.2107m , the...Ch. 13 - The mean diameter of the planet Saturn is 1.2108m...Ch. 13 - The mean diameter of the planet Mercury is...Ch. 13 - The acceleration due to gravity on the surface of...Ch. 13 - A body on the surface of a planet with the same...Ch. 13 - Find the escape speed of a projectile from the...Ch. 13 - Find the escape speed of a projectile from the...Ch. 13 - What is the escape speed of a satellite located at...Ch. 13 - (a) Evaluate the gravitational potential energy...Ch. 13 - An average-sized asteroid located 5.0107km from...Ch. 13 - (a) What will be the kinetic energy of the...Ch. 13 - (a) What is the change in energy of a 1000-kg...Ch. 13 - If a planet with 1.5 times the mass of Earth was...Ch. 13 - Two planets in circular orbits around a star have...Ch. 13 - Using the average distance of Earth from the Sun,...Ch. 13 - What is the orbital radius of an Earth satellite...Ch. 13 - Calculate the mass of the Sun based on data for...Ch. 13 - Find the mass of Jupiter based on the fact that I0...Ch. 13 - Astronomical observatrions of our Milky Way galaxy...Ch. 13 - (a) In order to keep a small satellite from...Ch. 13 - The Moon and Earth rotate about their common...Ch. 13 - The Sun orbits the Milky Way galaxy once each...Ch. 13 - A geosynchronous Earth satellite is one that has...Ch. 13 - Calculate the mass of the Sun based on data for...Ch. 13 - I0 orbits Jupiter with an average radius of...Ch. 13 - The “mean” orbital radius listed for astronomical...Ch. 13 - The perihelion of Halley’s comet is 0.586 AU and...Ch. 13 - The perihelion of the comet Legerkvist is 2.61 AU...Ch. 13 - What is the ratio of the speed at perihelion to...Ch. 13 - Eros has an elliptical orbit about the Sun, with a...Ch. 13 - What is the difference between the force on a...Ch. 13 - If the Sun were to collapse into a black hole, the...Ch. 13 - Consider Figure 13.23 in Tidal Forces. This...Ch. 13 - What is the Schwarzschild radius for the black...Ch. 13 - What would be the Schwarzschild radius, in light...Ch. 13 - A neutron star is a cold, collapsed star with...Ch. 13 - (a) How far from the center of Earth would the net...Ch. 13 - How far from the center of the Sun would the net...Ch. 13 - Calculate the values of g at Earth’s surface for...Ch. 13 - Suppose you can communicate with the inhabitants...Ch. 13 - (a) Suppose that your measured weight at the...Ch. 13 - A body of mass 100 kg is weighed at the North Pole...Ch. 13 - Find the speed needed to escape from the solar...Ch. 13 - Consider the previous problem and include the fact...Ch. 13 - A comet is observed 1.50 AU from the Sun with a...Ch. 13 - An asteroid has speed 15.5km/s when it is located...Ch. 13 - Space debris left from old satellites and their...Ch. 13 - A satellite of mass 1000 kg is in circular orbit...Ch. 13 - After Cares was promoted to a dwarf planet, we now...Ch. 13 - (a) Using the data in the previous problem for the...Ch. 13 - What is the orbital velocity of our solar system...Ch. 13 - (a) Using the information in the previous problem,...Ch. 13 - Circular orbits in Equation 13.10 for conic...Ch. 13 - Show that for eccentricity equal to one in...Ch. 13 - Using the technique shown in Satellite Orbits and...Ch. 13 - Given the perihelion distance, p , and aphelion...Ch. 13 - Comet P/1999 R1 has a perihelion of 0.0570 AU and...Ch. 13 - A tunnel is dug through the center of a perfectly...Ch. 13 - Following the technique used in Gravitation Near...Ch. 13 - Show that the areal velocity for a circular orbit...Ch. 13 - Show that the period of orbit for two masses, m1...Ch. 13 - Show that for small changes in height h, such that...Ch. 13 - Using Figure 13.9, carefull sketch a free body...Ch. 13 - (a) Show that tidal force on a small object of...Ch. 13 - Find the Hohmann transfer velocities,...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning