Show that the period of orbit for two masses, m 1 and m 2 , in circular orbits of radii r 1 and r 2 , respectively, about their common center-of −mass, is given by T = 2 π r 3 G ( m 1 + m 2 ) where r = r 1 + r 2 . ( Hint: The masses orbit at radii r 1 and r 2 , respectively where r = r 1 + r 2 . Use the expression for the center-of-mass to relate the two radii and note that the two masses must have equal but opposite momenta. Start with the relationship of the period to the circumference and speed of orbit for one of the masses. Use the result of the previous problem using momenta in the expression for the kinetic energy.)
Show that the period of orbit for two masses, m 1 and m 2 , in circular orbits of radii r 1 and r 2 , respectively, about their common center-of −mass, is given by T = 2 π r 3 G ( m 1 + m 2 ) where r = r 1 + r 2 . ( Hint: The masses orbit at radii r 1 and r 2 , respectively where r = r 1 + r 2 . Use the expression for the center-of-mass to relate the two radii and note that the two masses must have equal but opposite momenta. Start with the relationship of the period to the circumference and speed of orbit for one of the masses. Use the result of the previous problem using momenta in the expression for the kinetic energy.)
Show that the period of orbit for two masses,
m
1
and
m
2
, in circular orbits of radii
r
1
and
r
2
, respectively, about their common center-of −mass, is given by
T
=
2
π
r
3
G
(
m
1
+
m
2
)
where
r
=
r
1
+
r
2
. (Hint: The masses orbit at radii
r
1
and
r
2
, respectively where
r
=
r
1
+
r
2
. Use the expression for the center-of-mass to relate the two radii and note that the two masses must have equal but opposite momenta. Start with the relationship of the period to the circumference and speed of orbit for one of the masses. Use the result of the previous problem using momenta in the expression for the kinetic energy.)
8.
With the aid of a diagram draw the following electric circuit and use the resistor as the load,
(a) Closed circuit
(b) Open circuit
Lab 8 Part 3 PHET Wave Interface simulation.
I am having trouble with this part of the lab.
Mick and Rick are twins born on Earth in the year 2175. Rick grows up to be an Earth-bound robotics technician while Mick becomes an intergalactic astronaut. Mick leaves the Earth on his first space mission in the year 2200 and travels, according to his clock, for 10 years at a speed of 0.75c. Unfortunately, at this point in his journey, the structure of his ship undergoes mechanical breakdown and the ship explodes. How old is Rick when his brother dies?
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.