
Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 1RQ
What is the difference between a plate and a sheet?
Expert Solution & Answer

To determine
What is the difference between a plate and a sheet?
Explanation of Solution
Plate | Sheet |
|
|
| 2. The usage of sheets in the transportation industries as an automobile body panels, cans, tractor trailers. |
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Airplanes A and B, flying at constant velocity and at the same altitude, are tracking the eye
of hurricane C. The relative velocity of C with respect to A is 300 kph 65.0° South of West,
and the relative velocity of C with respect to B is 375 kph 50.0° South of East.
A
120.0 km
B
1N
1. Determine the relative velocity of B with respect to A.
A ground-based radar indicates that hurricane C is moving
at a speed of 40.0 kph due north.
2. Determine the velocity of airplane A.
3. Determine the velocity of airplane B.
Consider that at the start of the tracking expedition, the
distance between the planes is 120.0 km and their initial
positions are horizontally collinear.
4. Given the velocities obtained in items 2 and 3, should
the pilots of planes A and B be concerned whether the
planes will collide at any given time? Prove using
pertinent calculations. (Hint: x = x + vt)
0
Only 100% sure experts solve it correct complete solutions okk don't use guidelines or ai answers okk will dislike okkk.
Solve this probem and show all of the work
Chapter 13 Solutions
Manufacturing Engineering & Technology
Ch. 13 - What is the difference between a plate and a...Ch. 13 - Define roll gap, neutral point, and draft.Ch. 13 - What factors contribute to spreading in flat...Ch. 13 - What is forward slip? Why is it important?Ch. 13 - Describe the types of deflections that rolls...Ch. 13 - Describe the difference between a bloom, a slab,...Ch. 13 - Why may roller leveling be a necessary operation?Ch. 13 - List the defects commonly observed in flat...Ch. 13 - What are the advantages of tandem rolling? Pack...Ch. 13 - How are seamless tubes produced?
Ch. 13 - Why is the surface finish of a rolled product...Ch. 13 - What is a Sendzimir mill? What are its important...Ch. 13 - What is the Mannesmann process? How is it...Ch. 13 - Describe ring rolling. Is there a neutral plane in...Ch. 13 - How is back tension generated?Ch. 13 - Explain why the rolling process was invented and...Ch. 13 - Flat rolling reduces the thickness of plates and...Ch. 13 - Explain how the residual stress patterns shown in...Ch. 13 - Explain whether it would be practical to apply the...Ch. 13 - Describe the factors that influence the magnitude...Ch. 13 - Explain how you would go about applying front and...Ch. 13 - What typically is done to make sure that the...Ch. 13 - Make a list of parts that can be made by (a) shape...Ch. 13 - Describe the methods by which roll flattening can...Ch. 13 - It was stated that spreading in flat rolling...Ch. 13 - Flat rolling can be carried out by front tension...Ch. 13 - Explain the consequence of applying too high a...Ch. 13 - Note in Fig. 13.3f that the driven rolls (powered...Ch. 13 - Describe the importance of controlling roll...Ch. 13 - In Fig. 13.9a, if you remove the top compressive...Ch. 13 - Name several products that can be made by each of...Ch. 13 - List the possible consequences of rolling at (a)...Ch. 13 - It is known that in thread rolling, as illustrated...Ch. 13 - If a rolling mill encounters chatter, what process...Ch. 13 - Can the forward slip ever become negative? Why or...Ch. 13 - In Example 13.1, calculate the roll force and the...Ch. 13 - Calculate the individual drafts in each of the...Ch. 13 - Estimate the roll force, F, and the torque for an...Ch. 13 - A rolling operation takes place under the...Ch. 13 - Estimate the roll force and power for annealed...Ch. 13 - A flat-rolling operation is being carried out...Ch. 13 - A simple sketch of a four-high mill stand is shown...Ch. 13 - Obtain a piece of soft, round rubber eraser, such...Ch. 13 - If you repeat the experiment in Problem 13.45 with...Ch. 13 - Design a set of rolls to produce cross-sections...Ch. 13 - Design an experimental procedure for determining...Ch. 13 - Derive an expression for the thickest workpiece...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The differential equation of a cruise control system is provided by the following equation: WRITE OUT SOLUTION DO NOT USE A COPIED SOLUTION Find the closed loop transfer function with respect to the reference velocity (vr) . a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K? b. Find the step response for different values of K and plot in MATLAB. What can you observe?arrow_forwardSolve this problem and show all of the workarrow_forwardDetermine the minimum applied force P required to move wedge A to the right. The spring is compressed a distance of 175 mm. Neglect the weight of A and B. The coefficient of static friction for all contacting surface is μs = 0.35. Neglect friction at the rollers. k = = 15 kN/m P A B 10°arrow_forward
- DO NOT COPY SOLUTION- will report The differential equation of a cruise control system is provided by the following equation: Find the closed loop transfer function with respect to the reference velocity (vr) . a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K? b. Find the step response for different values of K and plot in MATLAB. What can you observe?arrow_forwarda box shaped barge 37m long, 6.4 m beam, floats at an even keel draught of 2.5 m in water density 1.025 kg/m3. If a mass is added and the vessel moves into water density 1000 kg/m3, determine the magnitude of this mass if the fore end and aft end draughts are 2.4m and 3.8m respectively.arrow_forwarda ship 125m long and 17.5m beam floats in seawater of 1.025 t/m3 at a draught of 8m. the waterplane coefficient is 0.83, block coefficient 0.759 and midship section area coefficient 0.98. calculate i) prismatic coefficient ii) TPC iii) change in mean draught if the vessel moves into water of 1.016 t/m3arrow_forward
- c. For the given transfer function, find tp, ts, tr, Mp . Plot the resulting step response. G(s) = 40/(s^2 + 4s + 40) handplot only, and solve for eacharrow_forwardA ship of 9000 tonne displacement floats in fresh water of 1.000 t/m3 at a draught 50 mm below the sea water line. The waterplane area is 1650 m2. Calculate the mass of cargo which must be added so that when entering seawater of 1.025 t/m3 it floats at the seawater line.arrow_forwardA ship of 15000 tonne displacement floats at a draught of 7 metres in water of 1.000t/cub. Metre.It is required to load the maximum amount of oil to give the ship a draught of 7.0 metre in seawater ofdensity 1.025 t/cub.metre. If the waterplane area is 2150 square metre, calculate the massof oil requiredarrow_forward
- A ship of 8000 tonne displacement floats in seawater of 1.025 t/m3 and has a TPC of 14. The vessel moves into fresh water of 1.000 t/m3 and loads 300 tonne of oil fuel. Calculate the change in mean draught.arrow_forwardAuto Controls DONT COPY ANSWERS - will report Perform the partial fraction expansion of the following transfer function and find the impulse response: G(s) = (s/2 + 5/3) / (s^2 + 4s + 6) G(s) =( 6s^2 + 50) / (s+3)(s^2 +4)arrow_forwardI submitted the below question and received the answer i copied into this question as well. Im unsure if it is correct, so looking for a checkover. i am stuck on the part tan-1 (0.05) = 0.04996 radians. Just unsure where the value for the radians came from. Just need to know how they got that answer and how it is correct before moving on to the next part. If any of the below information is wrong, please feel free to give me a new answer or an entire new explanation. An Inclining experiment done on a ship thats 6500 t, a mass of 30t was moved 6.0 m transvesly causing a 30 cm deflection in a 6m pendulum, calculate the transverse meta centre height. Here is the step-by-step explanation: Given: Displacement of the ship (W) = 6500 tonnes = 6500×1000=6,500,000kg Mass moved transversely (w) = 30 tonnes=30×1000=30,000kg The transverse shift of mass (d) = 6.0 meters Pendulum length (L) = 6.0 meters Pendulum deflection (x) = 30 cm = 0.30 meters Step 1: Formula for Metacentric Height…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License