Concept explainers
Mass of a Comet. On July 4, 2005, the NASA spacecraft Deep Impact fired a projectile onto the surface of Comet Tempel 1. This comet is about 9.0 km across. Observations of surface debris released by the impact showed that dust with a speed as low as 1.0 m/s was able to escape the comet. (a) Assuming a spherical shape, what is the mass of this comet? (Hint: See Example 13.5 in Section 13.3.) (b) How far from the comet’s center will this debris be when it has lost (i) 90.0% of its initial kinetic energy at the surface and (ii) all of its kinetic energy at the surface?
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
An Introduction to Thermal Physics
Physics: Principles with Applications
College Physics (10th Edition)
Conceptual Physical Science (6th Edition)
University Physics (14th Edition)
- A meteor of mass m is approaching earth as shown on the sketch. The distance h on the sketch below is called the impact parameter. The radius of the earth is Re 6400km . The 6x1024 kg mass of the earth is me = Suppose the meteor has an initial speed of vo = 30km/s. Assume that the meteor started very far away from the earth. Suppose the meteor just passes earth at a distance of 2.5 Re from the earth's center. You may ignore all other gravitational forces except the earth. Find the moment arm h in km (called the impact parameter). G -11 6.673x10-"Nm²kg %3D meteor very far away Vo h impact parameter planetarrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed ?esc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ?=2.93×106 g/m3 and volume ?=1.94×1012 m3 . Recall that the universal gravitational constant is ?=6.67×10-11 N·m2/kg2 .vesc = ? m/sarrow_forwardA meteoroid is moving towards a planet. It has mass m = 0.18×109 kg and speed v1 = 3.8×107 m/s at distance R1 = 1.6×107 m from the center of the planet. The radius of the planet is R = 0.26×107 m. The mass of the planet is M = 10×1025 kg. There is no air around the planet. a)Enter an expression for the total energy E of the meteoroid at R, the surface of the planet, in terms of defined quantities and v, the meteoroid’s speed when it reaches the planet’s surface. b)Enter an expression for v, the meteoroid’s speed at the planet’s surface, in terms of G, M, v1, R1, and R. c)Calculate the value of v in meters per second.arrow_forward
- A meteoroid is moving towards a planet. It has mass m = 0.18×109 kg and speed v1 = 3.8×107 m/s at distance R1 = 1.6×107 m from the center of the planet. The radius of the planet is R = 0.26×107 m. The mass of the planet is M = 10×1025 kg. There is no air around the planet. a)Enter an expression for the total energy E1 of the meteoroid at R1 in terms of defined quantities. b)Calculate the value of E1, in joules. c)Enter an expression for the total energy E of the meteoroid at R, the surface of the planet, in terms of defined quantities and v, the meteoroid’s speed when it reaches the planet’s surface.arrow_forwardA meteoroid is moving towards a planet. It has mass m = 0.18×109 kg and speed v1 = 3.8×107 m/s at distance R1 = 1.6×107 m from the center of the planet. The radius of the planet is R = 0.26×107 m. The mass of the planet is M = 10×1025 kg. There is no air around the planet. a)Enter an expression for the total energy E of the meteoroid at R, the surface of the planet, in terms of defined quantities and v, the meteoroid’s speed when it reaches the planet’s surface. b)Enter an expression for v, the meteoroid’s speed at the planet’s surface, in terms of G, M, v1, R1, and R. c)Calculate the value of v in meters per second.arrow_forwardA meteoroid is moving towards a planet. It has mass m = 0.18×109 kg and speed v1 = 3.8×107 m/s at distance R1 = 1.6×107 m from the center of the planet. The radius of the planet is R = 0.26×107 m. The mass of the planet is M = 10×1025 kg. There is no air around the planet. a)Enter an expression for the total energy E of the meteoroid at R, the surface of the planet, in terms of defined quantities and v, the meteoroid’s speed when it reaches the planet’s surface. b)Enter an expression for v, the meteoroid’s speed at the planet’s surface, in terms of G, M, v1, R1, and R. c)Calculate the value of v in meters per second.arrow_forward
- A meteoroid is moving towards a planet. It has mass m = 0.18×109 kg and speed v1 = 3.8×107 m/s at distance R1 = 1.6×107 m from the center of the planet. The radius of the planet is R = 0.26×107 m. The mass of the planet is M = 10×1025 kg. There is no air around the planet. a) Enter an expression for the gravitational potential energy PE1 of the meteoroid at R1 in terms of defined quantities and the gravitational constant G. Assume the potential energy is zero at infinity. b) Calculate the value of PE1, in joules. c)Enter an expression for the total energy E1 of the meteoroid at R1 in terms of defined quantities.arrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed ?escvesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ?=4.10×106 g/m3ρ=4.10×106 g/m3 and volume ?=1.25×1012 m3V=1.25×1012 m3 . Recall that the universal gravitational constant is ?=6.67×10−11 N·m2/kg2G=6.67×10−11 N·m2/kg2 .arrow_forwardDetermine the escape speed for a rocket to leave Earth's Moon. The radius of Moon is 1740km1740km and its mass is 7.36×1022kg7.36×1022kg.arrow_forward
- You are given the equation used to solve a problem: (6.67 × 10-¹¹N m²/kg²)(5.98 × 10²4 kg)(1000 kg) p2 Part A Choose the correct realistic problem for which this is the correct equation. Submit A 1000 kg comet falls on the earth with a speed of 1997 m/s when it reaches the surface. What was the radius of its orbit? A 1000 kg satellite orbits Saturn with a speed of 1997 m/s. What is the radius of the orbit? A 1000 kg satellite orbits the earth with a speed of 1997 m/s. What is the radius of the orbit? A 1000 kg comet falls on Saturn with a speed of 1997 m/s when it reaches the surface. What was the radius of its orbit? Part B r = Previous Answers Correct Finish the solution of the problem. Express your answer with the appropriate units. (1000 kg) (1997 m/s)² p C'H μA Value Units ?arrow_forwardA meteoroid is moving towards a planet. It has mass m=0.54×109 kg and speed v1=4.7×107 m/s at distance R1=2.4×107 m from the center of the planet. The radius of the planet is R=0.38×107 m. The mass of the planet is M=3.6×1025 kg. There is no air around the planet.arrow_forwardAn asteroid has a mass of 3.66 × 10kg and a radius of 8.2 × 10m. If a 25 kg mass is dropped from 10 m above the “ground” of the asteroid, how long will it take the mass to fall to the ground?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning