University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 13.14DQ
Discuss whether this statement is correct: “In the absence of air resistance, the trajectory of a projectile thrown near the earth’s surface is an ellipse, not a parabola.”
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A baseball player tosses the ball straight up in the air from the surface of the Earth. What must be true at the highest point the ball reaches?
A train is going from London to Manchester
with a velocity of 340 km/h. What is the
velocity component towards the rotation
axis of the Earth? The train is attracted by
gravity, pushed radially by centrifugal
acceleration, and tilted sideways by Coriolis
force. Calculate the resulting total
acceleration vector (direction and length)!
A projectile is fired straight upward from the Earth's surface at the South Pole with an initial speed equal to one third the escape speed. (The radius of the Earth is
6.38 x 10° m.)
(a) Ignoring air resistance, determine how far from the center of the Earth the projectile travels before stopping momentarily.
(b) What is the altitude of the projectile at this instant?
Chapter 13 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 13.1 - The planet Saturn has about 100 times the mass of...Ch. 13.2 - Rank the following hypothetical planets in order...Ch. 13.3 - Prob. 13.3TYUCh. 13.4 - Prob. 13.4TYUCh. 13.5 - The orbit of Comet X has a semi-major axis that is...Ch. 13.6 - In the classic 1913 science-fiction novel At the...Ch. 13.7 - Imagine a planet that has the same mass and radius...Ch. 13.8 - If the sun somehow collapsed to form a black hole,...Ch. 13 - A student wrote: The only reason an apple falls...Ch. 13 - If all planets had the same average density, how...
Ch. 13 - Is a pound of butler on the earth the same amount...Ch. 13 - Example 13.2 (Section 13.1) shows that the...Ch. 13 - When will you attract the sun more: today at noon,...Ch. 13 - Since the moon is constantly attracted toward the...Ch. 13 - Prob. 13.7DQCh. 13 - A planet makes a circular orbit with period T...Ch. 13 - The sun pulls on the moon with a force that is...Ch. 13 - Which takes more fuel: a voyage from the earth to...Ch. 13 - Prob. 13.11DQCh. 13 - Does the escape speed for an object at the earths...Ch. 13 - If a projectile is fired straight up from the...Ch. 13 - Discuss whether this statement is correct: In the...Ch. 13 - The earth is closer to the sun in November than in...Ch. 13 - A communications firm wants to place a satellite...Ch. 13 - Prob. 13.17DQCh. 13 - What would Keplers third law be for circular...Ch. 13 - In the elliptical orbit of Comet Hailey shown in...Ch. 13 - Many people believe that orbiting astronauts feel...Ch. 13 - As part of their training before going into orbit,...Ch. 13 - What is the ratio of the gravitational pull of the...Ch. 13 - CP Cavendish Experiment. In the Cavendish balance...Ch. 13 - Rendezvous in Space! A couple of astronauts agree...Ch. 13 - Two uniform spheres, each with mass M and radius...Ch. 13 - Two uniform spheres, each of mass 0.260 kg, are...Ch. 13 - Find the magnitude and direction of the net...Ch. 13 - A typical adult human has a mass of about 70 kg....Ch. 13 - An 8.00-kg point mass and a 12.0-kg point mass are...Ch. 13 - Prob. 13.9ECh. 13 - The point masses m and 2m lie along the x-axis,...Ch. 13 - At what distance above the surface of the earth is...Ch. 13 - The mass of Venus is 81.5% that of the earth, and...Ch. 13 - Titania, the largest moon of the planet Uranus,...Ch. 13 - Rhea, one of Saturns moons, has a radius of 764 km...Ch. 13 - Calculate the earths gravity force on a 75-kg...Ch. 13 - Prob. 13.16ECh. 13 - Use the results of Example 13.5 (Section 13.3) to...Ch. 13 - Ten days after it was launched toward Mars in...Ch. 13 - A planet orbiting a distant star has radius 3.24 ...Ch. 13 - Prob. 13.20ECh. 13 - Prob. 13.21ECh. 13 - Aura Mission. On July 15, 2004, NASA launched the...Ch. 13 - Two satellites are in circular orbits around a...Ch. 13 - International Space Station. In its orbit each...Ch. 13 - Prob. 13.25ECh. 13 - Prob. 13.26ECh. 13 - The star Rho1 Cancri is 57 light-years from the...Ch. 13 - In March 2006. two small satellites were...Ch. 13 - The dwarf planet Pluto has an elliptical orbit...Ch. 13 - Hot Jupiters. In 2004 astronomers reported the...Ch. 13 - Planets Beyond the Solar System. On October 15,...Ch. 13 - A uniform, spherical, 1000.0-kg shell has a radius...Ch. 13 - A uniform, solid, 1000.0-kg sphere has a radius of...Ch. 13 - CALC A thin, uniform rod has length L and mass M....Ch. 13 - Prob. 13.35ECh. 13 - A Visit to Santa. You decide to visit Santa Claus...Ch. 13 - The acceleration due to gravity at the north pole...Ch. 13 - Mini Black Holes. Cosmologists have speculated...Ch. 13 - Prob. 13.39ECh. 13 - In 2005 astronomers announced the discovery of a...Ch. 13 - Neutron stars, such as the one at the center of...Ch. 13 - Four identical masses of 8.00 kg each are placed...Ch. 13 - Three uniform spheres are fixed at the positions...Ch. 13 - CP Exploring Europa. There is strong evidence that...Ch. 13 - A uniform sphere with mass 50.0 kg is held with...Ch. 13 - Mission to Titan. On December 25, 2004, the...Ch. 13 - Prob. 13.47PCh. 13 - At a certain instant, the earth, the moon, and a...Ch. 13 - Prob. 13.49PCh. 13 - CP Submarines on Europa. Some scientists are eager...Ch. 13 - What is the escape speed from a 300-km-diameter...Ch. 13 - A landing craft with mass 12,500 kg is in a...Ch. 13 - Planet X rotates in the same manner as the earth,...Ch. 13 - (a) Suppose you are at the earths equator and...Ch. 13 - CP An astronaut, whose mission is to go where no...Ch. 13 - CP Your starship, the Aimless Wanderer, lands on...Ch. 13 - CP You are exploring a distant planet. When your...Ch. 13 - The 0.100-kg sphere in Fig. P13.58 is released...Ch. 13 - An unmanned spacecraft is in a circular orbit...Ch. 13 - Mass of a Comet. On July 4, 2005, the NASA...Ch. 13 - Falling Hammer. A hammer with mass m is dropped...Ch. 13 - Prob. 13.62PCh. 13 - Prob. 13.63PCh. 13 - Prob. 13.64PCh. 13 - Prob. 13.65PCh. 13 - The planet Uranus has a radius of 25,360 km and a...Ch. 13 - Prob. 13.67PCh. 13 - A rocket with mass 5.00 103 kg is in a circular...Ch. 13 - A 5000-kg spacecraft is in a circular orbit 2000...Ch. 13 - Prob. 13.70PCh. 13 - CALC Planets are not uniform inside. Normally,...Ch. 13 - One of the brightest comets of the 20th century...Ch. 13 - CALC An object in the shape of a thin ring has...Ch. 13 - CALC A uniform wire with mass M and length L is...Ch. 13 - Prob. 13.75PCh. 13 - DATA For each of the eight planets Mercury to...Ch. 13 - DATA For a spherical planet with mass M, volume V,...Ch. 13 - DATA For a planet in our solar system, assume that...Ch. 13 - Interplanetary Navigation. The most efficient way...Ch. 13 - CP Tidal Forces near a Black Hole. An astronaut...Ch. 13 - CALC Mass M is distributed uniformly over a disk...Ch. 13 - EXOPLANETS. As planets with a wide variety of...Ch. 13 - EXOPLANETS. As planets with a wide variety of...Ch. 13 - EXOPLANETS. As planets with a wide variety of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
In humans, hemophilia A (OMIM 306700) is an X-linked recessive disorder that affects the gene for factor VIII p...
Genetic Analysis: An Integrated Approach (3rd Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
A Slice of pizza has 500 kcal. If we could burn the pizza and use all the heat to warm a 50-L container of cold...
Campbell Biology in Focus (2nd Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
EVOLUTION CONNECTION The percentages of naturally occurring elements making up the human body (see Table 2.1) a...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A train is driving from Hamburg to Kiel with a velocity of 340 km/h. What is the velocity component towards the rotation axis of the Earth? The train is attracted by gravity, pushed radially by centrifugal acceleration and tilted sideways by Coriolis force. Calculate the resulting total acceleration vector (direction and length)!arrow_forward(a) The Sun orbits the Milky Way galaxy once each 2.60 x 108 y , with a roughly circular orbit averaging 3.00 x 104light years in radius. (A light year is the distance traveled by light in 1 y.) Calculate the centripetal acceleration of the Sun in its galactic orbit. Does your result support the contention that a nearly inertial frame of reference can be located at the Sun? (b) Calculate the average speed of the Sun in its galactic orbit. Does the answer surprise you?arrow_forwardA piece of spacecraft debris initially at rest falls to the earth’s surface from a height above the earth equal to one-half of the earth’s radius. Find the speed at which the piece of debris hits the surface. Neglect air resistance and the gravitational pull of the moon.arrow_forward
- (a) The Sun orbits the Milky Way galaxy once each 2.60 x 108 y , with a roughly circular orbit averaging 3.00 x 104 light years in radius. (A light year is the distance traveled by light in 1 y.) Calculate the centripetal acceleration of the Sun in its galactic orbit. Does your result support the contention that a nearly inertial frame of reference can be located at the Sun? (b) Calculate the average speed of the Sun in its galactic orbit. Does the answer surprise you?arrow_forwardA satellite is moving in a circular orbit around a small planet with an orbital speed to. The satellite is very close to the surface of the planet. In other words, the orbital radius of the satellite is equal to the radius R 1700 km of the planet. A projectile is launched vertically upward from the surface of the same planet with an intial speed to (same as the orbital speed of the satellite). Assuming that the acceleration due to gravity on the planet is constant. (a) calulate how high will the projectile rise. (Neglect air resistance.) (b) Calculate the maximum height using energy conservation theorem. (c) Explain why the two values of the maximum hieght are different and which one is correct.arrow_forwardCalculate the angle of banking for a circular track of radius 600 m as to be suitable for driving a car with maximum speed of 180 km/hr. (g = 9.8m/(s^2))arrow_forward
- Two satellites are in circular equatorial orbits of different altitudes. Satellite A is in a geosynchro- nous orbit (one with the same period as the earth's rotation so that it "hovers" over the same spot on the equator). Satellite B has an orbit of radius = 30 000 km. Calculate the velocity which A ap- rB pears to have to an observer fixed in B when the elevation angle 0 is (a) 0 and (b) 90°. The x-y axes are attached to B, whose antenna always points toward the center of the earth (-y-direction). Consult Art. 3/13 and Appendix D for the neces- sary orbital information. A y TA -rBarrow_forwardASAParrow_forwardNO.59arrow_forward
- The Sun orbits the Milky Way galaxy once each 2.60 × 108 years, with a roughly circular orbit averaging a radius of 3.00 × 104 light-years. (A light-year is the distance traveled by light in 1 year.) Calculate the centripetal acceleration of the Sun in its galactic orbit. Does your result support the contention that a nearly inertial frame of reference can be located at the Sun? (b) Calculate the average speed of the Sun in its galactic orbit. Does the answer surprise you?arrow_forward10-9. If a projectile is fired due east from a point on the surface of Earth at a northern latitude A with a velocity of magnitude V, and at an angle of inclination to the hor- izontal of a, show that the lateral deflection when the projectile strikes Earth is 4 V d%3D o sin A sin 'a cos a where w is the rotation frequency of Earth.arrow_forwardWe are planning a human exploration mission to Mars. We will first place our spacecraft into a circular around Mars and then send down a lander. a) If we want the spacecraft to orbit at an altitude of 170 km above the Martian surface, what will the velocity and orbital period of the spacecraft? b) When we land astronauts on the surface of Mars, what acceleration due to gravity in terms of g’s (i.e. as a fraction of the Earth’s gravitational acceleration) will the astronauts experience? You are permitted to use an online resource (e.g. Google) to find the necessary information about Mars that you might need in solving this problem.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY