Concept explainers
At a certain instant, the earth, the moon, and a stationary 1250-kg spacecraft lie at the vertices of an equilateral triangle whose sides are 3.84 × 105 km in length, (a) Find the magnitude and direction of the net gravitational force exerted on the spacecraft by the earth and moon. State the direction as an angle measured from a line connecting the earth and the spacecraft. In a sketch, show the earth, the moon, the spacecraft, and the force vector. (b) What is the minimum amount of work that you would have to do to move the spacecraft to a point far from the earth and moon? Ignore any gravitational effects due to the other planets or the sun.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
Human Biology: Concepts and Current Issues (8th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Cosmic Perspective Fundamentals
- The Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forward
- A satellite of mass 16.7 kg in geosynchronous orbit at an altitude of 3.58 104 km above the Earths surface remains above the same spot on the Earth. Assume its orbit is circular. Find the magnitude of the gravitational force exerted by the Earth on the satellite. Hint: The answer is not 163 N.arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forward(a) Calculate the magnitude of the gravitational force exerted by the Moon on a 60 kg human standing on the surface of the Moon. (The mass of the Moon is 7.4×1022 kg and its radius is 1.7x106 m.) N (b) Calculate the magnitude of the gravitational force exerted by the human on the Moon. N (c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 3 meters away. N (d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!) O Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses. | Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another. O Treat the humans as though they were points or uniform-density spheres. Treat the Moon as though it were spherically symmetric.arrow_forward
- A coordinate system (in meters) is constructed on the surface of a pool table, and three objects are placed on the table as follows: a m₁ = 1.3-kg object at the origin of the coordinate system, a m₂ = 2.4-kg object at (0, 2.0), and a m3 = 3.5-kg object at (4.0, 0). Find the resultant gravitational force exerted by the other two objects on the object at the origin. magnitude N direction Need Help? Read It above the +x-axisarrow_forwardA coordinate system (in meters) is constructed on the surface of a pool table, and three objects are placed on the table as follows: a m1 = 1.4-kg object at the origin of the coordinate system, a m2 = 2.6-kg object at (0, 2.0), and a m3 = 3.8-kg object at (4.0, 0). Find the resultant gravitational force exerted by the other two objects on the object at the origin.arrow_forwardThe drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles are ma -330 kg. ma- 520 kg, and mc-136 kg. Take the positive direction to be to the right. Find the net gravitational force, including sign, acting on (a) particle A, (b) particle B, and (c) particle C. (a) Number (b) Number (c) Number 0.500 m Units N Units N Units N B 0.250 marrow_forward
- Problem 2: Two small, spherical asteroids have masses m1 = 1.00 x 106 kg and m2. They are separated by a distance of d = 3.00 m. The first asteroid, m1 is 1.00 m from a rock. The rock has zero net gravitational force on it. The mass of the rock is not needed in the problem, but if you have trouble with this, assume the rock’s mass is 2.00 kg. Find m2. There are no other masses near these objects. Be sure to follow the problem-solving format: Given/Find, FBD, general equation in symbols, substitution, and Please help fast! Show me how you did it. I will upvote!arrow_forwardA spacecraft is on a journey to the moon. At what point, as measured from the center of the earth, does the gravitational force exerted on the spacecraft by the earth balance that exerted by the moon? This point lies on a line between the centers of the earth and the moon. The distance between the earth and the moon is 3.85 x 10 m, and the mass of the earth is 81.4 times as great as that of the moon. Number Units movearrow_forwardA coordinate system (in meters) is constructed on the surface of a pool table, and three objects are placed on the table as follows: a m, = 1.9-kg object at the origin of the coordinate system, a m, = 3.3-kg object at (0, 2.0), and a m, = 5.3-kg object at (4.0, 0). Find the resultant gravitational force exerted by the other two objects on the object at the origin. magnitude Your response differs from the correct answer by more than 10%. Double check your calculations. N direction 68.12 o above the +x-axisarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning