CP Tidal Forces near a Black Hole. An astronaut inside a spacecraft, which protects her from harmful radiation , is orbiting a black hole at a distance of 120 km from its center. The black hole is 5.00 times the mass of the sun and has a Schwarzschild radius of 15.0 km. The astronaut is positioned inside the spaceship such that one of her 0.030-kg ears is 6.0 cm farther from the black hole than the center of mass of the spacecraft and the other ear is 6.0 cm closer. (a) What is the tension between her cars? Would the astronaut find it difficult to keep from being torn apart by the gravitational forces? (Since her whole body orbits with the same angular velocity , one ear is moving too slowly for the radius of its orbit and the other is moving too fast. Hence her head must exert forces on her ears to keep them in their orbits.) (b) Is the center of gravity of her head at the same point as the center of mass? Explain.
CP Tidal Forces near a Black Hole. An astronaut inside a spacecraft, which protects her from harmful radiation , is orbiting a black hole at a distance of 120 km from its center. The black hole is 5.00 times the mass of the sun and has a Schwarzschild radius of 15.0 km. The astronaut is positioned inside the spaceship such that one of her 0.030-kg ears is 6.0 cm farther from the black hole than the center of mass of the spacecraft and the other ear is 6.0 cm closer. (a) What is the tension between her cars? Would the astronaut find it difficult to keep from being torn apart by the gravitational forces? (Since her whole body orbits with the same angular velocity , one ear is moving too slowly for the radius of its orbit and the other is moving too fast. Hence her head must exert forces on her ears to keep them in their orbits.) (b) Is the center of gravity of her head at the same point as the center of mass? Explain.
CP Tidal Forces near a Black Hole. An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km from its center. The black hole is 5.00 times the mass of the sun and has a Schwarzschild radius of 15.0 km. The astronaut is positioned inside the spaceship such that one of her 0.030-kg ears is 6.0 cm farther from the black hole than the center of mass of the spacecraft and the other ear is 6.0 cm closer. (a) What is the tension between her cars? Would the astronaut find it difficult to keep from being torn apart by the gravitational forces? (Since her whole body orbits with the same angular velocity, one ear is moving too slowly for the radius of its orbit and the other is moving too fast. Hence her head must exert forces on her ears to keep them in their orbits.) (b) Is the center of gravity of her head at the same point as the center of mass? Explain.
Definition Definition Rate of change of angular displacement. Angular velocity indicates how fast an object is rotating. It is a vector quantity and has both magnitude and direction. The magnitude of angular velocity is represented by the length of the vector and the direction of angular velocity is represented by the right-hand thumb rule. It is generally represented by ω.
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
Chapter 13 Solutions
University Physics with Modern Physics (14th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.