Concept explainers
A uniform sphere with mass 50.0 kg is held with its center at the origin, and a second uniform sphere with mass 80.0 kg is held with its center at the point x = 0, y = 3.00 m. (a) What are the magnitude and direction of the net gravitational force due to these objects on a third uniform sphere with mass 0.500 kg placed at the point a x = 4.00 m, y = 0? (b) Where, other than infinitely far away, could the third sphere be placed such that the net gravitational force acting on it from the other two spheres is equal to zero?
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
Microbiology: An Introduction
Campbell Biology in Focus (2nd Edition)
Campbell Biology (11th Edition)
Organic Chemistry (8th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forward
- The gravitational force exerted on an astronaut on the Earths surface is 650 N directed downward. When she is in the space station in orbit around the Earth, is the gravitational force on her (a) larger, (b) exactly the same, (c) smaller, (d) nearly but not exactly zero, or (e) exactly zero?arrow_forwardA point mass m is located a distance D from the nearest end of a thin rod of mass M and length L along the axis of the rod. Find the gravitational force exerted on the point mass by the rod.arrow_forwardEstimate the gravitational force between two sumo wrestlers, with masses 220 kg and 240 kg, when they are embraced and their centers are 1.2 m apart.arrow_forward
- In Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for the rockets position measured from the center of the Earth is given by y(t)=(R3/2+3g2Rt)2/3j where R is the radius of the Earth (6.38 106 m) and g is the constant acceleration of an object in free fall near the Earths surface (9.81 m/s2). a. Derive expressions for vy(t) and ay(t). b. Plot y(t), vy(t), and ay(t). (A spreadsheet program would be helpful.) c. When will the rocket be at y=4R? d. What are vy and ay when y=4R?arrow_forwardThe mass of the Earth is approximately 5.98 1024 kg, and the mass of the Moon is approximately 7.35 1022 kg. The Moon and the Earth are separated by about 3.84 108 m. a. What is the magnitude of the gravitational force that the Moon exerts on the Earth? b. If Serena is on the Moon and her mass is 25 kg, what is the magnitude of the gravitational force on Serena due to the Moon? The radius of the Moon is approximately 1.74 106 m.arrow_forwardA coordinate system (in meters) is constructed on the surface of a pool table, and three objects are placed on the table as follows: a m, = 1.9-kg object at the origin of the coordinate system, a m, = 3.3-kg object at (0, 2.0), and a m, = 5.3-kg object at (4.0, 0). Find the resultant gravitational force exerted by the other two objects on the object at the origin. magnitude Your response differs from the correct answer by more than 10%. Double check your calculations. N direction 68.12 o above the +x-axisarrow_forward
- Mass M is divided into two parts xM and (1-x)M. For a given separation, the value of x for which the gravitational attraction between the two pieces becomes maximum. Find this maximum value of x.arrow_forwardtwo point particles are fixed on an x axis separated by distance d. Particle A has mass mA and particle B has mass 3.00mA. A third particle C, of mass 75.0mA, is to be placed on the x axis and near particles A and B. In terms of distance d, at what x coordinate should C be placed so that the net gravitational force on particle A from particles B and C is zero?arrow_forwardA coordinate system (in meters) is constructed on the surface of a pool table, and three objects are placed on the table as follows: a m1 = 1.4-kg object at the origin of the coordinate system, a m2 = 2.6-kg object at (0, 2.0), and a m3 = 3.8-kg object at (4.0, 0). Find the resultant gravitational force exerted by the other two objects on the object at the origin.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University