University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 13.31E
Planets Beyond the Solar System. On October 15, 2001, a planet was discovered orbiting around the star HD 68988. Its orbital distance was measured to be 10.5 million kilometers from the center of the star, and its orbital period was estimated at 6.3 days. What is the mass of HD 68988? Express your answer in kilograms and in terms of our sun’s mass. (Consult Appendix F.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 3
a. In 2004 astronomers reported the discovery of a large Jupiter-sized planet orbiting in circular path
very close to the star HD 179949. The orbit was 6.4×10° km, and it takes the planet only 3.09 days
to make one orbit. (a) What is the mass of star? (b) How fast is this planet moving? Explain your
calculations.
In 2004 astronomers reported the discovery of a large Jupiter-sized planet orbiting very close to the star HD 179949 (hence the term “hot Jupiter”). The orbit was just 1/9 the distance of Mercury from our sun, and it takes the planet only 3.09 days to make one orbit (assumed to be circular). (a) What is the mass of the star? Express your answer in kilograms and as a multiple of our sun’s mass. (b) How fast (in km>s) is this planet moving?
A planet has been discovered orbiting the sun-like star HD 209458. From
the period and velocity measured by the Doppler method, its mass was
calculated to be 0.69 times that of Jupiter. The plane of the planet's orbit is
edge-on and it has been observed to transit across the face of the star. The
light from the star was seen to drop by 1.7% when the planet's disc lay fully
within that of the star which has a radius of 8 × 10°km. Assuming that
the brightness of the star is constant across the observed face, estimate
the diameter of the planet and hence it density in comparison with that of
Jupiter which has a radius of 7.1 × 10ʻkm.
3.
Chapter 13 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 13.1 - The planet Saturn has about 100 times the mass of...Ch. 13.2 - Rank the following hypothetical planets in order...Ch. 13.3 - Prob. 13.3TYUCh. 13.4 - Prob. 13.4TYUCh. 13.5 - The orbit of Comet X has a semi-major axis that is...Ch. 13.6 - In the classic 1913 science-fiction novel At the...Ch. 13.7 - Imagine a planet that has the same mass and radius...Ch. 13.8 - If the sun somehow collapsed to form a black hole,...Ch. 13 - A student wrote: The only reason an apple falls...Ch. 13 - If all planets had the same average density, how...
Ch. 13 - Is a pound of butler on the earth the same amount...Ch. 13 - Example 13.2 (Section 13.1) shows that the...Ch. 13 - When will you attract the sun more: today at noon,...Ch. 13 - Since the moon is constantly attracted toward the...Ch. 13 - Prob. 13.7DQCh. 13 - A planet makes a circular orbit with period T...Ch. 13 - The sun pulls on the moon with a force that is...Ch. 13 - Which takes more fuel: a voyage from the earth to...Ch. 13 - Prob. 13.11DQCh. 13 - Does the escape speed for an object at the earths...Ch. 13 - If a projectile is fired straight up from the...Ch. 13 - Discuss whether this statement is correct: In the...Ch. 13 - The earth is closer to the sun in November than in...Ch. 13 - A communications firm wants to place a satellite...Ch. 13 - Prob. 13.17DQCh. 13 - What would Keplers third law be for circular...Ch. 13 - In the elliptical orbit of Comet Hailey shown in...Ch. 13 - Many people believe that orbiting astronauts feel...Ch. 13 - As part of their training before going into orbit,...Ch. 13 - What is the ratio of the gravitational pull of the...Ch. 13 - CP Cavendish Experiment. In the Cavendish balance...Ch. 13 - Rendezvous in Space! A couple of astronauts agree...Ch. 13 - Two uniform spheres, each with mass M and radius...Ch. 13 - Two uniform spheres, each of mass 0.260 kg, are...Ch. 13 - Find the magnitude and direction of the net...Ch. 13 - A typical adult human has a mass of about 70 kg....Ch. 13 - An 8.00-kg point mass and a 12.0-kg point mass are...Ch. 13 - Prob. 13.9ECh. 13 - The point masses m and 2m lie along the x-axis,...Ch. 13 - At what distance above the surface of the earth is...Ch. 13 - The mass of Venus is 81.5% that of the earth, and...Ch. 13 - Titania, the largest moon of the planet Uranus,...Ch. 13 - Rhea, one of Saturns moons, has a radius of 764 km...Ch. 13 - Calculate the earths gravity force on a 75-kg...Ch. 13 - Prob. 13.16ECh. 13 - Use the results of Example 13.5 (Section 13.3) to...Ch. 13 - Ten days after it was launched toward Mars in...Ch. 13 - A planet orbiting a distant star has radius 3.24 ...Ch. 13 - Prob. 13.20ECh. 13 - Prob. 13.21ECh. 13 - Aura Mission. On July 15, 2004, NASA launched the...Ch. 13 - Two satellites are in circular orbits around a...Ch. 13 - International Space Station. In its orbit each...Ch. 13 - Prob. 13.25ECh. 13 - Prob. 13.26ECh. 13 - The star Rho1 Cancri is 57 light-years from the...Ch. 13 - In March 2006. two small satellites were...Ch. 13 - The dwarf planet Pluto has an elliptical orbit...Ch. 13 - Hot Jupiters. In 2004 astronomers reported the...Ch. 13 - Planets Beyond the Solar System. On October 15,...Ch. 13 - A uniform, spherical, 1000.0-kg shell has a radius...Ch. 13 - A uniform, solid, 1000.0-kg sphere has a radius of...Ch. 13 - CALC A thin, uniform rod has length L and mass M....Ch. 13 - Prob. 13.35ECh. 13 - A Visit to Santa. You decide to visit Santa Claus...Ch. 13 - The acceleration due to gravity at the north pole...Ch. 13 - Mini Black Holes. Cosmologists have speculated...Ch. 13 - Prob. 13.39ECh. 13 - In 2005 astronomers announced the discovery of a...Ch. 13 - Neutron stars, such as the one at the center of...Ch. 13 - Four identical masses of 8.00 kg each are placed...Ch. 13 - Three uniform spheres are fixed at the positions...Ch. 13 - CP Exploring Europa. There is strong evidence that...Ch. 13 - A uniform sphere with mass 50.0 kg is held with...Ch. 13 - Mission to Titan. On December 25, 2004, the...Ch. 13 - Prob. 13.47PCh. 13 - At a certain instant, the earth, the moon, and a...Ch. 13 - Prob. 13.49PCh. 13 - CP Submarines on Europa. Some scientists are eager...Ch. 13 - What is the escape speed from a 300-km-diameter...Ch. 13 - A landing craft with mass 12,500 kg is in a...Ch. 13 - Planet X rotates in the same manner as the earth,...Ch. 13 - (a) Suppose you are at the earths equator and...Ch. 13 - CP An astronaut, whose mission is to go where no...Ch. 13 - CP Your starship, the Aimless Wanderer, lands on...Ch. 13 - CP You are exploring a distant planet. When your...Ch. 13 - The 0.100-kg sphere in Fig. P13.58 is released...Ch. 13 - An unmanned spacecraft is in a circular orbit...Ch. 13 - Mass of a Comet. On July 4, 2005, the NASA...Ch. 13 - Falling Hammer. A hammer with mass m is dropped...Ch. 13 - Prob. 13.62PCh. 13 - Prob. 13.63PCh. 13 - Prob. 13.64PCh. 13 - Prob. 13.65PCh. 13 - The planet Uranus has a radius of 25,360 km and a...Ch. 13 - Prob. 13.67PCh. 13 - A rocket with mass 5.00 103 kg is in a circular...Ch. 13 - A 5000-kg spacecraft is in a circular orbit 2000...Ch. 13 - Prob. 13.70PCh. 13 - CALC Planets are not uniform inside. Normally,...Ch. 13 - One of the brightest comets of the 20th century...Ch. 13 - CALC An object in the shape of a thin ring has...Ch. 13 - CALC A uniform wire with mass M and length L is...Ch. 13 - Prob. 13.75PCh. 13 - DATA For each of the eight planets Mercury to...Ch. 13 - DATA For a spherical planet with mass M, volume V,...Ch. 13 - DATA For a planet in our solar system, assume that...Ch. 13 - Interplanetary Navigation. The most efficient way...Ch. 13 - CP Tidal Forces near a Black Hole. An astronaut...Ch. 13 - CALC Mass M is distributed uniformly over a disk...Ch. 13 - EXOPLANETS. As planets with a wide variety of...Ch. 13 - EXOPLANETS. As planets with a wide variety of...Ch. 13 - EXOPLANETS. As planets with a wide variety of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Albinism in humans is inherited as a simple recessive trait. For the following families, determine the genotype...
Concepts of Genetics (12th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are working at a summer internship for NASA, working to study exoplanets (planets we have detected around other stars). Calculate the orbital radius (distance of the planet to the star) of the newly detected planet Beta Sirius, if its' orbital period around its star is 5.51 x 107 s. You know from the data that the star has a mass of 2.21 x 1029 kg, and a radius of 2.70 x 106 and the planet has a mass of 3.00 x 1022 kg. Your Answer: Answerarrow_forwardCalculate the magnitude of the gravitational attråct between the particle and Neptune to three significant figures. rauneliotw.actbarw en the pane ard ficant figureS Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: x10arrow_forwardNeptune has a mass of 1.0 × 1026 kg and is 4.5 × 10⁹ km from the Sun with an orbital period of 177.5 years. Planetesimals in the outer primordial solar system 4.5 billion years ago coalesced into Neptune over hundreds of millions of years. If the primordial disk that evolved into our present day solar system had a radius of 10¹1 km and if the matter that made up these planetesimals that later became Neptune was spread out evenly on the edges of it, what was the orbital period of the outer edges of the primordial disk? Express your answer rounded to the nearest year, and be sure not to do any rounding before expressing your final answer. P = yearsarrow_forward
- Neptune has a mass of 1.0 ✕ 1026 kg and is 4.5 ✕ 109 km from the Sun with an orbital period of 165 years. Planetesimals in the outer primordial solar system 4.5 billion years ago coalesced into Neptune over hundreds of millions of years. If the primordial disk that evolved into our present day solar system had a radius of 1011 km, and if the matter that made up these planetesimals that later became Neptune was spread out evenly on the edges of it, what was the orbital period (in years) of the outer edges of the primordial disk? yrarrow_forwardNeptune has a mass of 1.0 ✕ 1026 kg and is 4.5 ✕ 109 km from the Sun with an orbital period of 165 years. Planetesimals in the outer primordial solar system 4.5 billion years ago coalesced into Neptune over hundreds of millions of years. If the primordial disk that evolved into our present day solar system had a radius of 1011 km, and if the matter that made up these planetesimals that later became Neptune was spread out evenly on the edges of it, what was the orbital period (in years) of the outer edges of the primordial disk?arrow_forwardAn astronaut lands on a new, recently discovered planet in a different star system. The astronaut measures the acceleration due to gravity on the planet to be 12m/s2, and the mass of the planet is measured to be 7.5E23kg. What is the radius of the new planet?arrow_forward
- Please find mass of sun and speed of planet..arrow_forward3 O с Which of the following is a reason that astronomers have not found giant planets with the orbit of Neptune around other stars? our theories suggest that orbits as far away from a star as Neptune are never stable (and the presence of Neptune in our own solar system is a big mystery) the method we are using to find planets currently can only reveal low-mass planets, while we expect high-mass planets at the orbit of Neptune we have already found several planets as far from their stars as Neptune is from the Sun At the distance of Neptune's orbit, it takes 165 years to go around the Sun; getting information about just one cycle of such a planet's orbit around another star would take astronomers 165 years O at the orbit of Neptune, only very low-mass planets (smaller than Mercury) can form F3 $ 4 R (1) F F4 V DII % 5 T Q Search F5 G 6 B F6 Y = 8 0 H F7 & 7 U N PrtScn J F8 W 8 Home 1 W F9 M 9 K End O F10 ) PgUp 0 Larrow_forwardJupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 kmkm (or even higher) above the surface. Io has a mass of 8.93×10^22kg and a radius of 1821 km. How high would this material go on earth if it were ejected with the same speed as on Io? (RE = 6370 km, m_E=5.96×10^24kg) Express your answer with the appropriate units.arrow_forward
- Voyager 1 and Voyager 2 surveyed the surface of Jupiter’s moon Io and photographed active volcanoes spewing liquid sulfur to heights of 70 km above the surface of this moon. Find the speed with which the liquid sulfur left the volcano. Io’s mass is 8.9 × 1022 kg, and its radius is 1 820 km.arrow_forwardA planet of mass ?=5.45×10^24 kg is orbiting in a circular path a star of mass ?=4.45×10^29 k . The radius of the orbit is ?=8.35×107^7km. What is the orbital period (in Earth days) of the planet ?planet?arrow_forwardOn October 15, 2001, a planet was discovered orbiting around the star HD68988. Its orbital distance was measured to be Part A 10.5 million kilometers from the center of the star, and its orbital period was estimated at 6.3 days. What is the mass of HD68988? For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Kepler's third law. Express your answer in kilograms. ΑΣφ ? M = kg Submit Request Answer Part B What is the mass of HD68988? Express your answer in terms of our sun's mass. M = Msun Submit Request Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY