Concept explainers
The point masses m and 2m lie along the x-axis, with m at the origin and 2m at x = L. A third point mass M is moved along the x-axis. (a) At what point is the net gravitational force on M due to the other two masses equal to zero? (b) Sketch the x-component of the net force on M due to m and 2m, taking quantities to the right as positive. Include the regions x < 0, 0 < x < L, and .x > L. Be especially careful to show the behavior of the graph on either side of x = 0 and x = L.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Microbiology: An Introduction
Introductory Chemistry (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology (11th Edition)
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forward
- The Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardOne dimension. In the figure, two point particles are fixed on an x axis separated by distance d. Particle A has mass ma and particle B has mass 9.00 mA. A third particle C, of mass 90.0 ma, is to be placed on the x axis and near particles A and B. In terms of distance d, at what x coordinate should C be placed so that the net gravitational force on particle A from particles B and C is zero? B. Number Units *d Use correct number of significant digits; the tolerance is +/-2%arrow_forwardPlease Asaparrow_forward
- Three identical very dense masses of 7100 kg each are placed on the x axis. One mass is at x1 = -110 cm , one is at the origin, and one is at x2 = 320 cm. What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 . What is the direction of the net gravitational force on the mass at the origin due to the other two masses?arrow_forwardSphere A with mass 80 kg is located at the origin of an xy coordinate system; sphere B with mass 60 kg is located at coordinates (0.25 m, 0); sphere C with mass 0.20 kg is located in the first quadrant 0.20 m from A and 0.15 m from B. In unit-vector notation, what is the gravitational force on Cdue to AandB?arrow_forwardTwo spherical celestial objects, call them A and B have mass M1 and M2 with radius R1 and R2 respectively. Initially they are at a distance d from each other. Now solve the following problems. (a) What would be the gravitational acceleration on the surface of object A ? You should ignore B’s presence in this case. (b) Find the escape velocity of object B. Again ignore A’s presence. (c) Now lets say these two objects, A & B start to move towards each other dude to mutual gravitational attraction. Find the time when they will collide with each other. Express you answers in terms of the given parameters and any universal constant.arrow_forward
- Two spherical masses m1 = 4.10 g and m2 = 3.90 g are located at coordinates (-5.00, -3.75) cm and (-3.00, 4.00) cm, respectively. %3D (a) What is the gravitational field at the origin? Express your answer in vector form. m/s2 (b) What is the force experienced by a mass m3 = 8.00 g placed at the origin? Express your answer in vector form. Fnet, g : (c) What is the gravitational potential energy of the three-mass system?arrow_forwardThe drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles are mA = 323 kg, mB = 572 kg, and mc = 199 kg. Take the positive direction to be to the right. Find the net gravitational force, including sign, acting on (a) particle A, (b) particle B, and (c) particle C. B 0.500 m 0.250 m (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question: Open Show Workarrow_forwardChapter 13, Problem 011 In the figure, two spheres of mass m = 9.24 kg. and a third sphere of mass M form an equilateral triangle, and a fourth sphere of mass mą is at the center of the triangle. The net gravitational force on that central sphere from the three other spheres is zero. (a) What is the value of mass M? (b) If we double the value of m4, what then is the magnitude of the net gravitational force on the central sphere? M (a) Number Units (b) Number Units Click if you would like to Show Work for this question: Open Show Work Question Attempts: 0 of 10 used SUBMIT ANSWER SAVE FOR LATERarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning