A meteor of mass m is approaching earth as shown on the sketch. The distance h on the sketch below is called the impact parameter. The radius of the earth is Re 6400km . The 6x1024 kg mass of the earth is me = Suppose the meteor has an initial speed of vo = 30km/s. Assume that the meteor started very far away from the earth. Suppose the meteor just passes earth at a distance of 2.5 Re from the earth's center. You may ignore all other gravitational forces except the earth. Find the moment arm h in km (called the impact parameter). G -11 6.673x10-"Nm²kg %3D meteor very far away Vo h impact parameter planet
Q: meteoroid is moving towards a planet. It has mass m = 0.18×109 kg and speed v1 = 4.7×107 m/s at…
A:
Q: Which of the following obeys Pauli's exclusion principle? All of the above Bose-Einstein Fermi Dirac…
A: This question is from bose- Einstein condensation
Q: f a Spacex Starlink satellite orbits the Earth at a height of 326.85 km above the Earth's surface…
A: Solution: Given that Earth's radius r= 6370 km = 6370x 103 m Earth's mass m = 5.98 x1024 kg G=6.67x…
Q: A planet of mass m=3.05×10^24 kg orbits a star of mass M=3.85×1029 kg in a circular path. The radius…
A: The expression to determine the orbital period of the planet is, T2=4π2MGR3
Q: A m = 71.2 kg object is released from rest at a distance h = 0.746994 R above the Earth's surface.…
A: Given:- The mass of the object is m = 71.2 kg. The object is released from the distance h=0.746994R…
Q: A rocket is launched from the surface of the Earth with an iniital speed of 2.93 km/s. What is the…
A: Given data: Initial speed v=2.93 km/s. Mass of earth M=5.79×1024 kg. Radius of earth r=6370 km.
Q: It is believed that there is a black hole with a mass of approximately four million times the mass…
A:
Q: A planet of mass ?=6.65×1024 kg orbits a star of mass ?=1.55×1029 kg in a circular path. The radius…
A:
Q: This is a proportional reasoning calculation. You will want to set up equations, but mostly to look…
A:
Q: A crew capsule is returning from the ISS, whose orbit is circular with radius Re + 400 km. Prior to…
A: The capsule is coming to the smaller parking orbit from the ISS orbit. Hence, the energy of the…
Q: A planet of mass m = 6.35 x 1024 kg orbits a star of mass M = 1.85 × 1029 kg in a circular path. The…
A:
Q: If a planet with 8.1 times the mass of Earth was traveling in Earth's orbit, what would its period…
A: According to KEPLER'S THIRD LAW Period of planet is cube of semimajor axis. Period is related with r…
Q: An object is dropped from an altitude of one Earth radius above Earth's surface. If M is the mass of…
A: Given :Altitude of object = RTotal distance = altitude + radius of EarthTotal distance = 2RMass of…
Q: A star is observed to undergo circular orbit around the black hole located at the centre of the…
A: We have a star which is undergoing a circular orbit of radius R=1000 AU=1.469*1014m with a time…
Q: A meteoroid is moving towards a planet. It has mass m=0.54×109 kg and speed v1=4.7×107 m/s at…
A: thank you
Q: You are working at a summer internship for NASA, working to study exoplanets (planets we have…
A:
Q: planet’s
A:
Q: We sent a probe out to orbit the planet Kerbal at a distance of 5.5x107m from the middle of the…
A: Height of the probe from the center of the planet is given and time period of rotation of the probe…
Q: QUESTION 12 A meteoroid is traveling straight toward the moon at 2,000 m/s when it is at an altitude…
A:
Q: © Macmillan Learning A horizontal meter stick has a mass of 211 g. Three weights ride on the meter…
A:
Q: what will be its velocity when it reaches 5.2x10^6m from the center of the new planet?
A: Principle of Conservation of Energy According to the law of conservation energy, energy can neither…
Q: An asteroid starts at rest infinitely far from Earth. The asteroid has a mass of 2.00×104 kg.…
A: The change in the gravitational energy of the asteroid can be determined as follows.…
Q: NOTE: Your answer suggests that you have assumed constant gravitational
A: Explained as, F=-GMMR+y2
Q: a)Enter an expression for the total energy E of the meteoroid at R, the surface of the planet, in…
A: Given that mass of the meteoroid and mass of the planet and distance from the center of the planet…
Q: The radius Rh of a black hole is the radius of a mathematical sphere, called the event horizon, that…
A: Given, Rh = 2GM/c2 a. Gravitational acceleration is given byag=Gmr2dag=2Gmr3drSince, h<<48…
Q: n the year 25 000 the Earth is 1.42x1011 m away from the sun and in a circular orbit, but a year…
A:
Q: A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of…
A: Given: Closest distance of comet from sun, r1 = 4.9×1010 m with speed, v1 = 9.3×104 m/s Farthest…
Q: What is the escape speed from a planet of mass M = 3.1 x 1023 kg and radius R = 2.6 x 106 m? Write…
A: Given data: Mass of planet (M) = 3.1×1023 kg Radius (R) = 2.6×106 m Universal Gravitational…
Q: Gravitational force is F = Gm1m2/r². Set G = 1 and m1 = 1, where m2 will be a planet with 1800 times…
A: Given Data : The gravitational constant is given as G = 1 The mass of m1 = 1 The mass of m2 = 1800…
Q: eteoroid’s speed at the planet’s surface, in terms of G, M, v1, R1, and R.
A:
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 6 images
- Two identical stars with mass M orbit around their center of mass. Each orbit is circular and has radius R, so that the two stars are always on opposite sides of the circle. Part A Find the gravitational force of one star on the other. Express your answer in terms of G, M, R. Πν ΑΣφ ? F = Part B Find the orbital speed of each star. Express your answer in terms of G, M, R. να ΑΣΦ7 ? Part CYou are given the equation used to solve a problem: (6.67 × 10-¹¹N m²/kg²)(5.98 × 10²4 kg)(1000 kg) p2 Part A Choose the correct realistic problem for which this is the correct equation. Submit A 1000 kg comet falls on the earth with a speed of 1997 m/s when it reaches the surface. What was the radius of its orbit? A 1000 kg satellite orbits Saturn with a speed of 1997 m/s. What is the radius of the orbit? A 1000 kg satellite orbits the earth with a speed of 1997 m/s. What is the radius of the orbit? A 1000 kg comet falls on Saturn with a speed of 1997 m/s when it reaches the surface. What was the radius of its orbit? Part B r = Previous Answers Correct Finish the solution of the problem. Express your answer with the appropriate units. (1000 kg) (1997 m/s)² p C'H μA Value Units ?The class I'm taking is physics for scientists and engineers! I am completely stuck. Need help. I have attached the problem. Please view both attachments before answering. Please write step-by-step solution so I can fully understand.
- Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 3.1x10^4 m/s when at a distance of 2.7x10^11 m from the center of the sun, what is its speed when at a distance of 4.7x10^10 m? Mass of the Sun is 1.99×10^30 kg. Gravitational constant is G=6.67×10^(−11) m^3 /(kg⋅s). What is the formula? (Answer: 75006.70209088 m/s)Two planets of equal mass orbit a much more massive star. Planet m 1 moves in a circular orbit of radius r 1 = 10^11 m with a period of 2 years (= 6.3 x 10^7 s). Planet m 2 moves in an elliptical orbit with its closes t distance r 1 and its farthest distance r 2 = 1.8 x 10^11 m. a. Find the period of m 2’s orbit. b. The elliptical orbit has greater energy. Which planet has the greater potential energy at point P? Justify. c. Which planet has the greater speed at point P? Justify. d. How does the speed of m 2 at point P compare with the speed at point A? Justify.A landing craft with mass M is in a circular orbit a distance d above the surface of a planet. The period ofthe orbit is T. The astronauts in the landing craft measure the diameter of the planet to be D. The landing craft sets down at the north pole of the planet. a)What is the weight of a person of mass m as they step out onto the plant’s surface? b)Suppose days on this planet last t seconds (i.e. the planet rotates about its axis once every t seconds).Write an expression for the astronaut’s perceived weight at the equator in terms of their weight at the north pole. (Hint: think about centripetal force)
- A meteoroid is moving towards a planet. It has mass m = 0.54×109 kg and speed v1 = 4.7×107 m/s at distance R1 = 1.6×107 m from the center of the planet. The radius of the planet is R = 0.78×107 m. The mass of the planet is M = 5.6×1025kg. There is no air around the planet. a)Enter an expression for the total energy E of the meteoroid at R, the surface of the planet, in terms of defined quantities and v, the meteoroid’s speed when it reaches the planet’s surface. Select from the variables below to write your expression. Note that all variables may not be required.α, β, θ, d, g, G, h, m, M, P, R, R1, t, v, v1 b)Enter an expression for v, the meteoroid’s speed at the planet’s surface, in terms of G, M, v1, R1, and R. c)Calculate the value of v in meters per second.Jupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 km (or even higher) above the surface. Io has a mass of 8.93×1022kg8.93×1022kg and a radius of 1821 km. How high would this material go on earth if it were ejected with the same speed as on Io? (RE = 6370 km, mE=5.96×1024kg)A sun rays take about 8 minutes to reach the Earth surface travelling at constant speed v= 3,0 * 10^8 m/s. How far is earth from the sun?
- The radius Rh of a black hole is the radius of a mathematical sphere, called the event horizon, that is centered on the black hole. Information from events inside the event horizon cannot reach the outside world. According to Einstein's general theory of relativity, Rh = 2GM/c2, where M is the mass of the black hole and c is the speed of light. Suppose that you wish to study a black hole near it, at a radial distance of 48Rh. However, you do not want the difference in gravitational acceleration between your feet and your head to exceed 10 m/s2 when you are feet down (or head down) toward the black hole. (a) Take your height to be 1.5 m. What is the limit to the mass of the black hole you can tolerate at the given radial distance? Give the ratio of this mass to the mass MS of our Sun.An extrasolar planet has mass 1.27E+25 kg and radius 67400000_m. What is the escape speed for this planet? 11440_m/s 12230_m/s 5014_m/s А. D. 16190_m/s В. Е. 1973_m/s С. F. 9206 m/sA meteoroid is moving towards a planet. It has mass m = 0.18×109 kg and speed v1 = 3.8×107 m/s at distance R1 = 1.6×107 m from the center of the planet. The radius of the planet is R = 0.26×107 m. The mass of the planet is M = 10×1025 kg. There is no air around the planet. a)Enter an expression for the total energy E of the meteoroid at R, the surface of the planet, in terms of defined quantities and v, the meteoroid’s speed when it reaches the planet’s surface. b)Enter an expression for v, the meteoroid’s speed at the planet’s surface, in terms of G, M, v1, R1, and R. c)Calculate the value of v in meters per second.