CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 6P
Consider a function f(x) and its derivative df/dx. Can this derivative be determined by evaluating dx/df and taking its inverse?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For each function g(t), plot the g(-t), -g(t), and g(t-1) of the functions
below.
g(1)
4
The shaft is supported by a smooth thrust bearing at A and a smooth journal bearing at B. (Figure 1)
-0.8 m
600 N-m
-0.8 m
-0.8 m
900 N
Draw the shear diagram for the shaft.
Draw the moment diagram for the shaft.
. A transformation of 1 mole of an ideal gas is depicted in the figure below. Two paths are
illustrated on the P-V diagram to take the gas from A to B through paths labelled a and 3.
The points A and B lie on an isotherm with a temperature denoted by To. You can assume that
the specific heat at constant pressure and specific heat at constant volume are both constants.
Pressure
Isotherm T = To
A
Path a
1
2
Path B
B
Volume
(a) What is the net heat flow into, or out of, the gas for path a in terms of the temperature To
and the temperature T₁ at the point 1.
(b) What is the net heat flow into, or out of, the gas for path 3 in terms of the temperature To
and the temperature T₂ at the point 2.
(c) Under what circumstances will the heat flow along path o always be greater than that along
path B
Chapter 12 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The following figure shows a three-stage separation process. The ratio Ps/D3 is 3, the ratio P2/D2 is 1, and the ratio of the amount of A to B in stream 2 is 4. Calculate the composition and amount of stream E. F-100 Ib S0% A 3 70% A 20% B 30% B 30% C D: D2 D3= 10 lb 50% A 17% A 0% C 23% B 10% B 2.arrow_forwardStatistical physics, Overview of Classical Thermodynamics, The Maxwell relations?arrow_forwardAsap pleasearrow_forward
- 3.23 3.24 d 3.25. Gas at constant T and P is contained in a supply line connected through a valve to closed tank containing the same gas at a lower pressure. The valve is opened to allow flow of gas into the tank, and then is shut again. (a) Develop a general equation relating n1 and n2, the moles (or mass) of gas in the tank at the beginning and end of the process, to the properties U1 and U2, the internal energy of the gas in the tank at the beginning and end of the process, and H', the enthalpy of the gas in the supply line, and to Q, the heat transferred to the material in the tank during the process. (b) Reduce the general equation to its simplest form for the special case of an ideal gas with constant heat capacities. (c) Further reduce the equation of (b) for the case of n1 = 0. (d) Further reduce the equation of (c) for the case in which, in addition, Q = 0. (e) Treating nitrogen as an ideal gas for which Cp equation to the case in which a steady supply of nitrogen at 25°C and…arrow_forwardCopy of Oxygen (molar mass 32 kg/kmol ) expands reversibly in a cylinder behind a piston at a constant pressure of 3 bar. The volume initially is 0.0119 m3 and finally is 0.0331 m3; the initial temperature is 18.06 0C. Calculate the specific gas constant with the correct unit to two decimal places. Assume oxygen to be a perfect gas and take the specific heat at constant pressure as = 0 . 9 1 7 k J / k g K and molar gas constant as = 8,314 J / kmol Karrow_forwardIt's a thermodynamics question.arrow_forward
- 3 kg of nitrogen (ideal gas) undergo the evolutions appearing in Figure 1. Evolution 1-2 is linear and evolution 2-3 is parabolic. Knowing that in the initial state T1 = 200° C, determine: a) the pressure, volume and temperature for each state, b) the work done between 1 and 3, c) the heat exchanged between 1 and 3arrow_forwardWhen U=f(T,v) for an ideal gas if B=1.4 E-5 /K, and if partial derivative of internal energy with respect to volume at constant temperature 6.16 J/m3 with V=5 m3 then the pressure * :is 1.161 E 5 Pa O 6.73 E 6 Pa 7.221 E 4 Pa 3.14 E 5 Pa Oarrow_forwardFor the statements in them, put T if they are true and F if they are false. a) ( ) When a certain mass of ice melts at 0ºC, its density decreases. In this case, due to the first law of thermodynamics, the variation of the internal energy will be smaller than the heat involved in the process.b) ( ) During a process involving an ideal gas, you know the initial iternal energy and the final internal energy during the process. So you can know if the energy variation internal gas during the process is due to the work performed or the heat transferred.c) ( ) For a temperature increase of ∆T, a certain amount of ideal gas requires 30J when heated to constant volume and 50 J when heated to constant pressure. In thisIn this case, it is correct to state that the work performed by the gas in the second situation is 20 J.d) ( ) The higher the temperature of an ideal gas in a fixed volume V, the lower the free middle path of its molecules.e) ( ) When a system loses heat and performs work during a…arrow_forward
- 3. A metallic rod 20 cm long is heated to a uniform temperature of 100° C. At t = 0 the ends of the bar are plunged into an ice bath at 0° C and thereafter maintained at this temperature. Find an expression for the temperature u(x, t) if the bar is made of cast iron. Material a (cm²/s) Silver 1.71 Copper 1.14 Aluminum 0.86 Cast iron 0.12 Granite 0.011 Brick 0.0038 Water 0.00144 Table 1: Thermal Diffusivity Constants for Common Materialsarrow_forwardBriefly discuss the difference between derivative operators d and ∂. If the derivative ∂u/∂x appears in an equation, what does this imply about variable u?arrow_forward200 J of energy is transferred to a system consisting of 2.0 moles of an ideal gas. If the volume of this gas stays at a constant 2.6 L, calculate the change in internal energy of the gas. Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License