CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.6, Problem 28P
To determine
The sublimation pressure of water at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1.40 kg sample of water at 15.0°C is in a calorimeter. You drop a piece of steel with a mass of 0.330 kg at 230°C into it. After the sizzling subsides, what is the final equilibrium temperature (in °C)? (Make the reasonable assumptions that any steam produced condenses into liquid water during the process of equilibration and that
the evaporation and condensation don't affect the outcome.)
°C
A container filled with 35 kg of liquid water at 95°C is placed in a 90-m
room that is initially at 12°C. Thermal equilibrium is
established after a while as a result of heat transfer between the water and the air in the room. Assume the room is at the
sea level, well sealed, and heavily insulated.
Room
90 m3
12°C
Water
95°C
Determine the final equilibrium temperature. Use the table containing the ideal gas specific heats of various common gases. (You must
provide an answer before moving on to the next part.)
The final equilibrium ten
°С.
ature is
An ideal gas is adiabatically expanded along path AB from a temperature
T=500 K to 300 K, and then isochorically heated along a path BC back to
T=500 K.
(i) Draw a pressure-volume diagram for this process and show that the ratio of
pressures at points A and C obeys
(3)
PA
PC
where y is the adiabatic index of the ideal gas.
(ii) Given that the ratio of pressures at points A and C is found to be
PA
3.59
PC
Chapter 12 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider water (H2O) at 320C and 6 Mpa. Determine the error in the specific volume predicted by the ideal gas law relative to the actual value. The molar mass of H2O is 18.02 g/molarrow_forward. Determine the h, s and °SH of steam at 0.5 MPa and 520°C using Mollier Chart.arrow_forwardA 0.15 m of an ideal gas at a pressure of 20 bar and 650 K is expanded isothermally to 2 times the initial volume. It is then cooled to 290 K at constant volume. Calculate the net work donearrow_forward
- Express the Joule coefficient and the Joule – Thomson coefficient as its value for an ideal gas.arrow_forwardA 2.80-mol sample of helium gas initially at 300 K, and 0.400 atm is compressed isothermally to 1.40 atm. Note that the helium behaves as an ideal gas. (a) Find the final volume of the gas. m³ (b) Find the work done on the gas. kJ (c) Find the energy transferred by heat. kJarrow_forwardThree moles of an ideal gas expand isothermally at 400 K to 3.0 times the initial volume. What is the work in J done by the gas if ?arrow_forward
- In the first case, there is 5 kg of water at 300 kPa (3 bar) pressure and 60% dryness in a closed container whose volume does not change. Heat transfer is performed until the closed container water reaches a pressure value of 1 MPa. The limit temperature of the closed container is 300 Cwill be taken.Note: Changes in kinetic and potential energies are negligible.(P0 = 100 kPa, T0 = 25 ◦C and T (K) = 273.15 + ◦C)a) Find the heat transfer to the sealed container.b) Find the exergy that disappears during the process.arrow_forward0.15 m3 of an ideal gas at a pressure of 15 bar and 552 K is expanded isothermally to 4 times the initial volume. It is then cooled to 290K at constant volume and then compressed back polytropically to its initial state. Calculate the net work done and heat transferred during the cyclearrow_forwardPlot DSa and DSw as functions of Tw on a single graph. Plot DSsys [DSsys = DSa +DSw] as functions of Tw on a second graph.arrow_forward
- REAL GASES Obtain the expression of the critical pressure in terms of Van der Waals constants for real gases.arrow_forwardDuring an adiabatic expansion the temperature of 0.450 mole of Argon (Ar) drops from 50 oC to 10.0 oC. The argon may be treated as an ideal gas.(a) Draw a p-V diagram for this process.(b) How much work does the gas do?(c) What is the change in internal energy of the gas?arrow_forwardCalculate the internal energy of 0.3 m3 of steam at 4 bar and 0.95 dryness. If this steam is superheated at constant pressure through 30°C, determine the heat added and change in internal energy.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY