CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 70P
What is the error involved in the (a) enthalpy and (b) internal energy of CO2 at 350 K and 10 MPa if it is assumed to be an ideal gas?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
uestion 4:
(a) An 88-litre gas cylinder is filled with propane gas at a pressure of 1.15 MPa
and 18°C. The propane is used to fuel a gas burner. After some time, the
pressure and temperature are 210 kPa and 23°C respectively. Determine the
mass of propane used. The molar mass of propane is 44 g/mole.
(b) A piston-cylinder device filled with air at 365 kPa and 12°C, has an initial volume of
1.3 litres. The air is expanded at constant pressure to a volume of 3.6 litres and 516°C.
Determine the amount of heat and work involved in this process and state whether the
heat and work are into, or out of the gas.
Once upon a time, an engineering is conducting an experiment wherein he uses 10 moles of a
gas. He then places it in a constant volume vessel. At start the gas is at P = 0.5 bar and T =300 K
and the container is also at T = 300 K. He decided to place it in a furnace, where its surroundings
are at a constant T = 600 K. It was left overnight in the furnace until both the container and the
gas inside it reach thermal equilibrium with the surroundings. He assumed an ideal gas for this
experiment at the pressures attained throughout this process, and has a constant heat capacity
of CV* = 2.5R. The container itself has a mass of 10 kg (not including the mass of the gas inside)
and a heat capacity of CV = 1.5 J/g - K.
●
Find the heat added to the gas.
a. 62.4 kJ
b. 46.4 kJ
c. 90.4 kJ
d. 87.4 kJ
e. none of these
Find the heat added to the container.
a.588kJ
b. 638 kJ
c. 1457 kJ
d. 3465 kJ
Find the change in entropy of the gas
a. 0.14 kJ/K b.0.3 kJ/K
c. 0.78 kJ/K
Find the change in entropy of…
Two insulated cylinders A and B with volumes VA = 1.2 m³ and VB = 6.4 m³ contain chlorine gas at different pressures and temperatures. The cylinders are insulated (no heat is lost to or gained
from the outside) and connected by a valve. Initially, the valve is closed and the gas in the two cylinders has the following values:
PA= 4.0 x 105 N/m2, TA= 250 K, PB = 2.5 x 105 N/m², Tg = 580 K.
The valve is opened to allow the contents in the two cylinders to mix until the pressure equalizes.
valve
K
TEACHER
(a) Assuming there is no change in the temperatures of the containers themselves, determine the final temperature of the gas in the two cylinders. The atomic mass of chlorine gas is 35.4527
U.
(b) Determine the final pressure.
N/m²
Chapter 12 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Argon gas is contained in a cylinder fitted with a frictionless piston. Initially, the cylinder contains 200 L of Argon at 140 kPa and 10o C. The gas is then compressed in a polytropic process according to the relationship Pvn = C until the final pressure and temperature are 700 kPa and 180o C respectively. For Argon; R = 0.2081 kJ/kg.K and cv = 0.3122 kJ/kg.K. i) Sketch the system and the details of the process. ii) Show the process on a P-v diagram iii) Determine the polytropic exponent, n iv) Calculate the work involved during the process [kJ] v) Calculate the heat transfer during this process [kJ]arrow_forwardSteam at a pressure of 3.5 MPa is known to have a specific volumeof 50 x10−3 m3Kg. What is the specific enthalpy?arrow_forwardDetermine the internal energy change for carbon monoxide, in kJ/kg, as it is heated from 312° K to 1456° K, using the ideal gas properties tablearrow_forward
- Thermodynamics Question: An insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains 6 kg of an ideal gas at 800 kPa and 50 oC, and the other part is evacuated (pressure in the other part is zero). The partition is now removed, and the gas expands into the entire tank. What can be said about the final temperature of the gas? (Consider Joule’s experiment)arrow_forward6-Five kg of steam at pressure of 4.9 bar is produced from water at 20C. Determine the amount of heat supplied if the steam is 0.9 dry. (12263KJ)arrow_forwardArgon is confined in a frictionless piston-cylinder device surrounded by the atmosphere.Initially, the pressure of the gas is 800 kPa. Assume the processes connecting the end states areof the following types: (a) the pressure is constant, (b) the product PV is constant, and (c) the product PV2 constant. (d) Compare the processes by plotting the three paths on the same PVdiagram.arrow_forward
- What is the percentage of error involved in treating carbon dioxide at 5 MPa and 25°C as an ideal gas?arrow_forward(5) An insulated piston-cylinder device contains 15 L of saturated liquid water at a constant pressure of 950 kPa. Water is stirred by a paddle wheel while a current of 15 A flows for 28 min through a resistor placed in the water. If 64% of the liquid is evaporated during this constant pressure process and the paddle-wheel work amounts to 600 kJ, determine the voltage of the source. Also, show the process on a P-v diagram with respect to saturation lines. H2O P= constant We Wsharrow_forwardSolve the Question carefully and please Write clear and Circle and lab the final answers for the work produced and the heat transferredarrow_forward
- Please mention the table number used to obtain the values of enthalpy (h1,h2)arrow_forwardThere are 1.5 kgm of gas for which R=0.377kJ/kg-K and k=1.3 that undergo an isometric process from an initial state of 550kPa and 60C. During the process there are 1500kJ of heat removed from the gas. Find the change in enthalphy (kJ)arrow_forwardExpress the Joule coefficient and the Joule – Thomson coefficient as its value for an ideal gas.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license