3.23 3.24 d 3.25. Gas at constant T and P is contained in a supply line connected through a valve to closed tank containing the same gas at a lower pressure. The valve is opened to allow flow of gas into the tank, and then is shut again. (a) Develop a general equation relating n1 and n2, the moles (or mass) of gas in the tank at the beginning and end of the process, to the properties U1 and U2, the internal energy of the gas in the tank at the beginning and end of the process, and H', the enthalpy of the gas in the supply line, and to Q, the heat transferred to the material in the tank during the process. (b) Reduce the general equation to its simplest form for the special case of an ideal gas with constant heat capacities. (c) Further reduce the equation of (b) for the case of n1 = 0. (d) Further reduce the equation of (c) for the case in which, in addition, Q = 0. (e) Treating nitrogen as an ideal gas for which Cp equation to the case in which a steady supply of nitrogen at 25°C and 3 bar flows into an evacuated tank of 4 m volume, and calculate the moles of nitrogen that flow into the tank to equalize the pressures for two cases: IS£ = (7/2)R, apply the appropriate 1. Assume that no heat flows from the gas to the tank or 2. Assume that the tank weighs 400 kg, is perfectly insulated, has an initial tem- perature of 25°C, has a specific heat of 0.46 kJ-kg-1.K-1, and is heated by the gas so as always to be at the temperature of the gas in the tank. through the tank walls.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
3.23
3.24
d
3.25. Gas at constant T and P is contained in a supply line connected through a valve to
closed tank containing the same gas at a lower pressure. The valve is opened to allow
flow of gas into the tank, and then is shut again.
(a) Develop a general equation relating n1 and n2, the moles (or mass) of gas in the
tank at the beginning and end of the process, to the properties U1 and U2, the
internal energy of the gas in the tank at the beginning and end of the process, and
H', the enthalpy of the gas in the supply line, and to Q, the heat transferred to the
material in the tank during the process.
(b) Reduce the general equation to its simplest form for the special case of an ideal
gas with constant heat capacities.
(c) Further reduce the equation of (b) for the case of n1 = 0.
(d) Further reduce the equation of (c) for the case in which, in addition, Q = 0.
(e) Treating nitrogen as an ideal gas for which Cp
equation to the case in which a steady supply of nitrogen at 25°C and 3 bar flows
into an evacuated tank of 4 m volume, and calculate the moles of nitrogen that
flow into the tank to equalize the pressures for two cases:
IS£
= (7/2)R, apply the appropriate
1. Assume that no heat flows from the gas to the tank or
2. Assume that the tank weighs 400 kg, is perfectly insulated, has an initial tem-
perature of 25°C, has a specific heat of 0.46 kJ-kg-1.K-1, and is heated by the
gas so as always to be at the temperature of the gas in the tank.
through the tank walls.
Transcribed Image Text:3.23 3.24 d 3.25. Gas at constant T and P is contained in a supply line connected through a valve to closed tank containing the same gas at a lower pressure. The valve is opened to allow flow of gas into the tank, and then is shut again. (a) Develop a general equation relating n1 and n2, the moles (or mass) of gas in the tank at the beginning and end of the process, to the properties U1 and U2, the internal energy of the gas in the tank at the beginning and end of the process, and H', the enthalpy of the gas in the supply line, and to Q, the heat transferred to the material in the tank during the process. (b) Reduce the general equation to its simplest form for the special case of an ideal gas with constant heat capacities. (c) Further reduce the equation of (b) for the case of n1 = 0. (d) Further reduce the equation of (c) for the case in which, in addition, Q = 0. (e) Treating nitrogen as an ideal gas for which Cp equation to the case in which a steady supply of nitrogen at 25°C and 3 bar flows into an evacuated tank of 4 m volume, and calculate the moles of nitrogen that flow into the tank to equalize the pressures for two cases: IS£ = (7/2)R, apply the appropriate 1. Assume that no heat flows from the gas to the tank or 2. Assume that the tank weighs 400 kg, is perfectly insulated, has an initial tem- perature of 25°C, has a specific heat of 0.46 kJ-kg-1.K-1, and is heated by the gas so as always to be at the temperature of the gas in the tank. through the tank walls.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY