An adiabatic 0.2-m3 storage tank that is initially evacuated is connected to a supply line that carries nitrogen at 225 K and 10 MPa. A valve is opened, and nitrogen flows into the tank from the supply line. The valve is closed when the pressure in the tank reaches 10 MPa. Determine the final temperature in the tank (a) treating nitrogen as an ideal gas, and (b) using generalized charts. Compare your results to the actual value of 293 K.
FIGURE P12–101
(a)
The final temperature in the tank by treating nitrogen as an ideal gas and compare the result to the actual value of
Answer to Problem 101RP
The final temperature in the tank by treating nitrogen as an ideal gas is
Explanation of Solution
Write the equation of mass balance.
Here, the inlet mass is
The change in mass of the system for the control volume is expressed as,
Here, the suffixes 1 and 2 indicates the initial and final states of the system.
Consider the given insulated tank as the control volume.
The valve is closed when the pressure in tank reaches to
Rewrite the Equation (I) as follows.
Write the energy balance equation.
Here, the heat transfer is
Since the tank is adiabatic, there is no heat transfer i.e.
The Equation (III) reduced as follows.
Substitute
Express the Equation (V) in molar basis.
Here, the molar mass of nitrogen is
Conclusion:
The inlet condition of the nitrogen is
While considering the nitrogen as the ideal gas, its enthalpy is solely depends on temperature.
Refer Table A-18, “Ideal-gas properties of nitrogen,
The molar enthalpy of nitrogen corresponding to the temperature of
Refer Equation (VI).
The final temperature of the nitrogen is expressed as follows.
Refer Table A-18, “Ideal-gas properties of nitrogen,
The final temperature
Thus, the final temperature in the tank by treating nitrogen as an ideal gas is
The percentage error with the actual temperature value of
The error associated is
(b)
The final temperature in the tank by using generalized departure charts.
Answer to Problem 101RP
The final temperature in the tank by using generalized departure charts is
Explanation of Solution
Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.
The critical temperature and pressure of nitrogen gas is as follows.
The reduced pressure
At inlet:
Refer Figure A-29, “Generalized enthalpy departure chart”.
The enthalpy departure factor
Write formula for enthalpy departure factor
Here, the inlet molar enthalpy at ideal gas state is
Rearrange the Equation (I) to obtain
Write the formula for molar enthalpy at final state
Write the formula for molar internal energy at final state.
Here, the compressibility factor is
The universal gas constant
Conclusion:
Refer part (a) answer for
Substitute
Refer Equation (VI).
It is given that the actual final temperature of nitrogen is
Consider the exit temperature
The reduced pressure
Refer Figure A-29, “Generalized enthalpy departure chart”.
The enthalpy departure factor
Refer Figure A-15, “Nelson–Obert generalized compressibility chart”.
The compressibility factor
Refer Table A-18, “Ideal-gas properties of nitrogen,
The final molar enthalpy of nitrogen
Substitute
Substitute
Consider the exit temperature
The reduced pressure
Refer Figure A-29, “Generalized enthalpy departure chart”.
The enthalpy departure factor
Refer Figure A-15, “Nelson–Obert generalized compressibility chart”.
The compressibility factor
Refer Table A-18, “Ideal-gas properties of nitrogen,
The final molar enthalpy of nitrogen
Substitute
Substitute
Express interpolation formula to determine the final temperature
Substitute
Thus, the final temperature in the tank by using generalized departure charts is
The percentage error with the actual temperature value of
The error associated is
Want to see more full solutions like this?
Chapter 12 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- (b) A rigid tank of 10 L vessel initially contains a mixture of liquid water and vapor at 100°C with 12.3% quality. Heat of 100 kJ is supplied to the rigid tank until the water reach superheated level at 1 MPa. The maximum temperature that the rigid tank can withstand is of 300°C. Evaluate if the rigid tank is able to withstand the heat supply of 100 kJ. Justify your answer with related calculation.arrow_forwardPlease provide a detailed solution, Don't just put the equation. It's important to provide an explanation.arrow_forwardIt is insulated against heat, except for a cylinder base B with a volume of 100 liters. This cylinder is divided into two chambers by a heat-tight and frictionless piston. Compartment A contains 100 kPa pressure and 20 oC air, and compartment B contains neon gas at 30 oC. Initially, the volumes of both compartments are equal. Compartment A is connected to a pipe through which air flows at 800 kPa and 20 oC. The valve is opened and closed when the pressure in the chamber reaches 800 kPa. In compartment B, neon gas is inverted and the temperature changes in a steady state. a) Calculate the final volume and compression work of the neon. b) Calculate the temperature and mass of the air in compartment A in the final state. c) Calculate the total entropy change of the entire system.arrow_forward
- A and B containers (fixed volume) are connected together by a valve. Tank A contains 400 kPa and 0.3 m3 refrigerant 134a at 60% dryness. Tank B contains 0.5 m3 of refrigerant 134a at 240 kPa pressure and 100 oC temperature. Then the valve is opened and the system reaches 280 kPa equilibrium pressure. Calculate the final temperature.arrow_forwardThe internal energy of a certain ideal gas is given by the expression U=850 + 0.529pv Btu/lb Where p is in psia. Determine the exponent k in PVK=C for the gas undergoing an isentropic processarrow_forwardA rigid tank of 0.22-m'volume initially contains saturated vapor refrigerant-134a at 1.2 MPa. The tank is connected by a valve to a supply line that carries refrigerant-134a at 1.6 MPa and 46 C. The valve is opened, and the refrigerant is allowed to enter the tank. The valve is closed when it is observed that the tank contains saturated liquid at 1.6 MPa. Determine (a) the mass of the refrigerant that has entered the tank and (b) the amount of heat transfer.arrow_forward
- A piston-cylinder assembly contains R-134a refrigerant in a volume of 0.15 m3, 0.28 MPa and 40 ° C. Initially the piston is fixed with a pin. The piston-cylinder assembly is heated from a heat source at 150 ° C and the pressure rises to 0.32 MPa. Then the pin is pulled and heat is transferred to an environment at 25 ° C, allowing the R-134a refrigerant to reach 50 ° C at constant pressure. a) Calculate the amount of heat and work transfer in processes. b) Calculate the entropy generation in processes. Comment on the conformity of the processes to the second law of thermodynamics.arrow_forwardConsider the steam engine shown in the figure below which is composed of a boiler and an insulated turbine. The boiler is a rigid tank with a volume of 50 L and initially contains saturated liquid vapor mixture of H₂0 at 125 kPa with a quality of 0.04. Now, H₂O in the boiler is heated. When the pressure in the boiler reaches 800 kPa, the pressure regulator opens and allows the saturated vapor to enter the turbine at a pressure of 800 kPa. Heating continues until all H₂O remaining in the boiler is saturated vapor. If the exit from the turbine is a saturated vapor at 125 kPa, determine (a) the total heat transfer to the boiler and (b) the total turbine work. Show the process path of H₂O in the boiler on P-v and T-v diagrams. ↑ Vapor H₂O Liquid H₂O Boiler Pressure regulator Insulated turbinearrow_forwarduse T(c)= 125arrow_forward
- expa 6-Five kg of steam at pressure of 4.9 bar is produced from water at 20°C. Determine the amount of heat supplied if the steam is 0.9 dry. (12263kJ) 7-One kg of water at 47.8°C is heated under constant pressure of 13.7bar until it is converted into steam with 111°C degree of superheated. Determine the quantity of heat supplied during superheating and the total heat. (268kJ, 2852kJ) Special Home Workarrow_forwardAnalyse an industrial thermodynamic system (refrigeration systems) in terms of work done, from first principals. Include a p-v diagram to aid in your explanation.arrow_forwardSubcooled water at 5°C is pressurised to 350 kPa with no increase in temperature, and then passed through a heat exchanger where it is heated until it reaches saturated liquid-vapour state at a quality of 0.63. If the water absorbs 499 kW of heat from the heat exchanger to reach this state, calculate how many kilogrammes of water flow through the pipe in an hour. Give your answer to one decimal place. Please provide correct solution Don't copypaste in cheggarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY