THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 63P
What is the most general equation of state for which the Joule-Thomson coefficient is always zero?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Estimate the Joule-Thomson coefficient of Re-134a at 320 kPa and 20°C. Report
your answer in degrees C / kPa or degrees C/ MPa.
Derive Clausius-Clapeyron equation.
9d
Chapter 12 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4 Show that for a gas obeying van der Walls equation of state, 2a Cp – Cy = R + vTarrow_forward4) A sample of argon at 01 atm pressure and 25C expands reversibly and adiabatically from 0.5 L to 1.0 L. Calculate its final temperature, the work done during the expansion, and the change in internal energy. The molar heat capacity of argon at constant volume is 12.48 JK-1mol-1.arrow_forwardWrite the generalized relation (write only final equations and explain each term) for Internal energy changes, Enthalpy changes, Entropy Changes and Mayer relation.arrow_forward
- A 5kg Cu block at 200 C is submerged in 100 lb water at 10 C in an insulated vessel Determine the final equilibrium temperature.arrow_forwardExpress the Joule coefficient and the Joule – Thomson coefficient as its value for a Berthelot gas.arrow_forward(a) In reaching equilibrium, how much heat transfer occurs from 1.00 kg of water at 40.0º C when it is placed in contact with 1.00 kg of 20.0º C water in reaching equilibrium? (b) What is the change in entropy due to this heat transfer? (c) How much work is made unavailable, taking the lowest temperature to be 20.0º C ? Explicitly show how you follow the steps in the Problem-Solving Strategies for Entropy.arrow_forward
- A mole sample of liquid ammonia at 273 Kelvin is cooled to liquid ammonia at 240 Kelvin. The process is done irreversibly by placing the sample in liquid nitrogen at 77 Kelvin. The heat capacity relationship for ammonia gas is given below. Assuming that the heat of vaporization is 23.4 KiloJoules per mole, answer the questions that follow. What is the entropy change of this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the entropy change of the surroundings for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the total entropy change (or the entropy of the universe) for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES.arrow_forwardPlease show the complete solution. (Example: Conversion of Units) Steam at 2 MPa and 250°C in a rigid cylinder is cooled until the quality is 30%. Find the heat rejected from the cylinder. At 1.3 MPa, a mixture of steam and water has an entropy of 3 kJ/kg-K, Find the enthalpy of the mixture. @ 1.3MPa: sf = 2.2515 kJ/kg-K sg = 6.4952 kJ/kg-K hf = 814.93 kJ/kg hfg = 1972.7 kJ/kgarrow_forwardEstimate the Joule-Thomson coefficient for steam at 3MPA and 300°C using the steam tables. Estimate the Joule-Thomson coefficient for steam at 6MPA and 500°C using the steam tables. During phase change the Joule-Thomson coefficient is always positive or negative? Using gure A-14E (or A-14) in the tables of your book, is the Joule-Thomson coefficient ever negative for r134a? If so, where is it negative relative to temperature and pressure?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License