THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12.6, Problem 42P

Derive expressions for (a) Δu, (b) Δh, and (c) Δs for a gas whose equation of state is P(va) = RT for an isothermal process.

(a)

Expert Solution
Check Mark
To determine

To drive an expression of Δu for a gas whose equation of state is P(va)=RT for an isothermal process.

Answer to Problem 42P

The expression of Δu for a gas whose equation of state is P(va)=RT for an isothermal process is Δu=0.

Explanation of Solution

Write the equation of state of the given gas.

P(va)=RT (I)

Here, the temperature is T, the pressure is P, the specific volume is v, the universal gas constant is R and the constant is a.

Write the general expression for change in internal energy (Δu).

Δu=u2u1=T1T2cvdT+v1v2(T(PT)vP)dv (II)

Here, the internal energy at state 1, 2 is u1,u2 and the specific heat at constant volume is cv; the symbol indicates the partial derivative of variables.

Rearrange the Equation (I) to obtain P.

P=RTva (III)

Conclusion:

Partially differentiate the Equation (III) with respect to temperature by keeping the specific volume as constant.

(PT)v=T(RTva)v=Rva(TT)v=Rva(1)=Rva

Substitute Rva for (PT)v in Equation (II).

Δu=T1T2cvdT+v1v2(T(Rva)P)dv=T1T2cvdT+v1v2(RTvaP)dv=T1T2cvdT+v1v2(PP)dv=T1T2cvdT+v1v2(0)dv

=T1T2cvdT (IV)

For an isothermal process, the temperature is kept constant.

T=constant

The differential temperature or change in temperature becomes zero.

dT=0

Substitute 0 for dT in Equation (IV).

Δu=T1T2cv(0)=0

Thus, the expression of Δu for a gas whose equation of state is P(va)=RT for an isothermal process is Δu=0.

(b)

Expert Solution
Check Mark
To determine

To drive an expression of Δh for a gas whose equation of state is P(va)=RT for an isothermal process.

Answer to Problem 42P

The expression of Δh for a gas whose equation of state is P(va)=RT for an isothermal process is Δh=a(P2P1).

Explanation of Solution

Write the general expression for change in enthalpy (Δh).

Δh=h2h1=T1T2cpdT+P1P2(vT(vT)P)dP (V)

Here, the enthalpy at state 1, 2 is h1,h2 and the specific heat at constant pressure is cp; the symbol indicates the partial derivative of variables.

Rearrange the Equation (V) to obtain v.

v=RTP+a (VI)

Conclusion:

Partially differentiate the Equation (VI) with respect to temperature by keeping the pressure as constant.

(vT)P=T(RTP+a)P=T(RTP)P+T(a)P=RP(TT)P+0=RP(1)

=RP

Substitute RP for (vT)P in Equation (V).

Δh=T1T2cpdT+P1P2(vT(RP))dP=T1T2cpdT+P1P2(vRTP)dP=T1T2cpdT+P1P2[v(va)]dP=T1T2cpdT+P1P2[vv+a]dP

=T1T2cpdT+P1P2adP=T1T2cpdT+a(P2P1) (VI)

For an isothermal process, the temperature is kept constant.

T=constant

The differential temperature or change in temperature becomes zero.

dT=0

Substitute 0 for dT in Equation (VI).

Δh=T1T2cp(0)+a(P2P1)=0+a(P2P1)=a(P2P1)

Thus, the expression of Δh for a gas whose equation of state is P(va)=RT for an isothermal process is Δh=a(P2P1).

(c)

Expert Solution
Check Mark
To determine

To drive an expression of Δs for a gas whose equation of state is P(va)=RT for an isothermal process.

Answer to Problem 42P

The expression of Δs for a gas whose equation of state is P(va)=RT for an isothermal process is Δs=R(lnP2P1).

Explanation of Solution

Write the general expression for change in entropy (Δs).

Δs=s2s1=T1T2cpTdTP1P2(vT)PdP (VII)

Here, the entropy at state 1, 2 is s1,s2.

Conclusion:

Substitute RP for (vT)P in Equation (VII).

Δs=T1T2cpTdTP1P2(RP)dP=T1T2cpTdTRP1P2(1P)dP=T1T2cpTdTR(lnP2P1) (VIII)

For an isothermal process, the temperature is kept constant.

T=constant

The differential temperature or change in temperature becomes zero.

dT=0

Substitute 0 for dT in Equation (VIII).

Δs=T1T2cpT(0)R(lnP2P1)=0R(lnP2P1)=R(lnP2P1)

Thus, the expression of Δs for a gas whose equation of state is P(va)=RT for an isothermal process is Δs=R(lnP2P1).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A virtual experiment is designed to determine the effect of friction on the timing and speed of packages being delivered to a conveyor belt and the normal force applied to the tube. A package is held and then let go at the edge of a circular shaped tube of radius R = 5m. The particle at the bottom will transfer to the conveyor belt, as shown below. Run the simulations for μ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and determine the time and speed at which the package is delivered to the conveyor belt. In addition, determine the maximum normal force and its location along the path as measured by angle 0. Submit in hardcopy form: (0) Free Body Diagram, equations underneath, derivations (a) Your MATLAB mfile (b) A table listing the values in 5 columns: μ, T (time of transfer), V (speed of transfer), 0 (angle of max N), Nmax (max N) (c) Based on your results, explain in one sentence what you think will happen to the package if the friction is increased even further, e.g. μ = 0.8. NOTE: The ODE is…
Patm = 1 bar Piston m = 50 kg 5 g of Air T₁ = 600 K P₁ = 3 bar Stops A 9.75 x 10-3 m² FIGURE P3.88
Assume a Space Launch System (Figure 1(a)) that is approximated as a cantilever undamped single degree of freedom (SDOF) system with a mass at its free end (Figure 1(b)). The cantilever is assumed to be massless. Assume a wind load that is approximated with a concentrated harmonic forcing function p(t) = posin(ωt) acting on the mass. The known properties of the SDOF and the applied forcing function are given below. • Mass of SDOF: m =120 kip/g • Acceleration of gravity: g = 386 in/sec2 • Bending sectional stiffness of SDOF: EI = 1015 lbf×in2 • Height of SDOF: h = 2000 inches • Amplitude of forcing function: po = 6 kip • Forcing frequency: f = 8 H

Chapter 12 Solutions

THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<

Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY