Concept explainers
Derive expressions for (a) Δu, (b) Δh, and (c) Δs for a gas whose equation of state is P(v − a) = RT for an isothermal process.
(a)
To drive an expression of
Answer to Problem 42P
The expression of
Explanation of Solution
Write the equation of state of the given gas.
Here, the temperature is
Write the general expression for change in internal energy
Here, the internal energy at state 1, 2 is
Rearrange the Equation (I) to obtain
Conclusion:
Partially differentiate the Equation (III) with respect to temperature by keeping the specific volume as constant.
Substitute
For an isothermal process, the temperature is kept constant.
The differential temperature or change in temperature becomes zero.
Substitute
Thus, the expression of
(b)
To drive an expression of
Answer to Problem 42P
The expression of
Explanation of Solution
Write the general expression for change in enthalpy
Here, the enthalpy at state 1, 2 is
Rearrange the Equation (V) to obtain
Conclusion:
Partially differentiate the Equation (VI) with respect to temperature by keeping the pressure as constant.
Substitute
For an isothermal process, the temperature is kept constant.
The differential temperature or change in temperature becomes zero.
Substitute
Thus, the expression of
(c)
To drive an expression of
Answer to Problem 42P
The expression of
Explanation of Solution
Write the general expression for change in entropy
Here, the entropy at state 1, 2 is
Conclusion:
Substitute
For an isothermal process, the temperature is kept constant.
The differential temperature or change in temperature becomes zero.
Substitute
Thus, the expression of
Want to see more full solutions like this?
Chapter 12 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- show workingarrow_forwardCFD help Figure 3: Advection equation, solution for three different timesteps. Q1) Provide an explanation what conditions and numerical setup could explain the curves. Identify which of the three curves is the first, second and third timestep.arrow_forwardanswer pleasearrow_forward
- Figure 3 shows the numerical solution of the advection equation for a scalar u along x at three consecutive timesteps. 1.0 0.8- 0.6 0.4- 0.2 0.0 00 -0.2 -0.4 -0.6- 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Figure 3: Advection equation, solution for three different timesteps.arrow_forwardQuestion 2 Figure 3 shows the numerical solution of the advection equation for a scalar u along x at three consecutive timesteps. 1.0 0.8- 0.6- 0.4- 0.2- 0.0- -0.2- -0.4- -0.6 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Figure 3: Advection equation, solution for three different timesteps. a) Provide an explanation what conditions and numerical setup could explain the curves. Identify which of the three curves is the first, second and third timestep. b) Consider explicit schemes with central and upwind discretisations. Explain how each of these candidate discretisations could produce the behaviour shown in Figure 3. c) Determine the CFL number that was used in the simulation for each of the candidate schemes for all possible updates. Assume that the timestep and mesh-width used are constant. Read the data to two digits of accuracy from Figure 4 shown at the end of the question, which is an enlarged version of Figure 3. Demonstrate your method and input data for one calculation, but then use a…arrow_forwardanswer pleasearrow_forward
- Provide an explanation what conditions and numerical setup could explain the curves. Identify which of the three curves is the first. second and third timestep.arrow_forwardWhat are the accompanving boundary conditions for this bar?arrow_forward1.1 Consider the fireclay brick wall of Example 1.1 that is operating under different thermal conditions. The tem- perature distribution, at an instant in time, is T(x) = a+ bx where a 1400 K and b = -1000 K/m. Determine the heat fluxes, q", and heat rates, q, at x = 0 and x = L. Do steady-state conditions exist?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY