Isopropyl alcohol is the main ingredient in rubbing alcohol. It can decompose into acetone (the main ingredient in nail polish remover) and hydrogen gas according to the following reaction: C 3 H 7 OH ( g ) ⇌ C 2 H 6 CO ( g ) + H 2 ( g ) At 180°C, the equilibrium constant for the decomposition is 0.45. If 20.0 mL ( d = 0.785 g / mL ) of isopropyl alcohol is placed in a 5.00-L vessel and heated to 180°C, what percent- age remains undissociated at equilibrium?
Isopropyl alcohol is the main ingredient in rubbing alcohol. It can decompose into acetone (the main ingredient in nail polish remover) and hydrogen gas according to the following reaction: C 3 H 7 OH ( g ) ⇌ C 2 H 6 CO ( g ) + H 2 ( g ) At 180°C, the equilibrium constant for the decomposition is 0.45. If 20.0 mL ( d = 0.785 g / mL ) of isopropyl alcohol is placed in a 5.00-L vessel and heated to 180°C, what percent- age remains undissociated at equilibrium?
Solution Summary: The author explains how the equilibrium constant is calculated by calculating the percentage of isopropyl alcohol that remains undissociated in the system at equilibrium.
Isopropyl alcohol is the main ingredient in rubbing alcohol. It can decompose into acetone (the main ingredient in nail polish remover) and hydrogen gas according to the following reaction:
C
3
H
7
OH
(
g
)
⇌
C
2
H
6
CO
(
g
)
+
H
2
(
g
)
At 180°C, the equilibrium constant for the decomposition is 0.45. If 20.0 mL
(
d
=
0.785
g
/
mL
)
of isopropyl alcohol is placed in a 5.00-L vessel and heated to 180°C, what percent- age remains undissociated at equilibrium?
K
m
Choose the best reagents to complete the following reaction.
L
ZI
0
Problem 4 of 11
A
1. NaOH
2. CH3CH2CH2NH2
1. HCI
B
OH
2. CH3CH2CH2NH2
DII
F1
F2
F3
F4
F5
A
F6
C
CH3CH2CH2NH2
1. SOCl2
D
2. CH3CH2CH2NH2
1. CH3CH2CH2NH2
E
2. SOCl2
Done
PrtScn
Home
End
FA
FQ
510
*
PgUp
M
Submit
PgDn
F11
None
Please provide a mechanism of synthesis 1,4-diaminobenzene, start from a benzene ring.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell