Concept explainers
(a)
To find:The quadratic regressionfor the datagiven in the table for the gross revenue of Broadway season.
(a)
Answer to Problem 54E
The
Explanation of Solution
Given information:The table given below shows the gross revenue for Broadway season in different years:
Broadway Season Revenue | |
Year | Amount ($ millions) |
1994 | 406 |
1999 | 603 |
2004 | 769 |
2005 | 862 |
2006 | 939 |
2007 | 938 |
Calculation:
Consider that
To find the natural logarithm regression equation of the given data, use graphing calculator.
Step 1: Press
Step 2: List the input values 4, 9, 14, 15, 16 and 17 in the L1 column.
Step 3: List the input values 406, 603, 769, 862, 939 and 938 in the L2 column.
Step 4: Press the keystrokes
Therefore, the quadratic regression equation for the Broadway Season Revenue is
(b)
To plot:The graph of the quadratic regression for the given data on a
(b)
Explanation of Solution
Given information:The table given below shows the gross revenue for Broadway season in different years:
Broadway Season Revenue | |
Year | Amount ($ millions) |
1994 | 406 |
1999 | 603 |
2004 | 769 |
2005 | 862 |
2006 | 939 |
2007 | 938 |
Graph:
From part (a), the quadratic regression equation for the Broadway Season Revenue is
Step 1: Press
Step 2: Press
Step 3: Press the keystrokes
Figure (1)
Interpretation: From the graph it can be observed that the gross revenue for Broadway season in year 2008 is more than 1000 millions of dollars.
(c)
To find: The amount of gross revenue for the Broadway Season in year 2012.
(c)
Answer to Problem 54E
The amount of gross revenue for the Broadway Season in year 2012 is 1228.15 millions of dollars.
Explanation of Solution
Given information:The table given below shows the gross revenue for Broadway season in different years:
Broadway Season Revenue | |
Year | Amount ($ millions) |
1994 | 406 |
1999 | 603 |
2004 | 769 |
2005 | 862 |
2006 | 939 |
2007 | 938 |
Calculation:
From part (a), the quadratic regression equation for the Broadway Season Revenue is
Consider that
Substitute 22 for x in the quadratic regression equation.
Therefore, the amount of gross revenue for the Broadway Season in year 2012 is 1228.15 millions of dollars.
(d)
To find:The linear regression for the data given in the table for the gross revenue of Broadway season and the amount of revenue in 2012.
(d)
Answer to Problem 54E
The linear regression equation for the Broadway Season Revenue is
Explanation of Solution
Given information:The table given below shows the gross revenue for Broadway season in different years:
Broadway Season Revenue | |
Year | Amount ($ millions) |
1994 | 406 |
1999 | 603 |
2004 | 769 |
2005 | 862 |
2006 | 939 |
2007 | 938 |
Calculation:
To find the linear regression equation of the given data, use graphing calculator.
Press the keystrokes
Now, substitute 22 for x in the above equation to find the revenue in 2012.
Therefore, the linear regression equation for the Broadway Season Revenue is
Chapter 1 Solutions
Calculus: Graphical, Numerical, Algebraic
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Elementary Statistics (13th Edition)
Introductory Statistics
Pre-Algebra Student Edition
Elementary Statistics: Picturing the World (7th Edition)
A First Course in Probability (10th Edition)
- Determine whether the lines L₁ (t) = (-2,3, −1)t + (0,2,-3) and L2 p(s) = (2, −3, 1)s + (-10, 17, -8) intersect. If they do, find the point of intersection.arrow_forwardConvert the line given by the parametric equations y(t) Enter the symmetric equations in alphabetic order. (x(t) = -4+6t = 3-t (z(t) = 5-7t to symmetric equations.arrow_forwardFind the point at which the line (t) = (4, -5,-4)+t(-2, -1,5) intersects the xy plane.arrow_forward
- Find the distance from the point (-9, -3, 0) to the line ä(t) = (−4, 1, −1)t + (0, 1, −3) .arrow_forward1 Find a vector parallel to the line defined by the parametric equations (x(t) = -2t y(t) == 1- 9t z(t) = -1-t Additionally, find a point on the line.arrow_forwardFind the (perpendicular) distance from the line given by the parametric equations (x(t) = 5+9t y(t) = 7t = 2-9t z(t) to the point (-1, 1, −3).arrow_forward
- Let ä(t) = (3,-2,-5)t + (7,−1, 2) and (u) = (5,0, 3)u + (−3,−9,3). Find the acute angle (in degrees) between the lines:arrow_forwardA tank initially contains 50 gal of pure water. Brine containing 3 lb of salt per gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus, the tank is empty after exactly 50 min. (a) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?arrow_forwardpleasd dont use chat gptarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning