Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
9th Edition
ISBN: 9781285462530
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 46GQ

Consider the three types of cubic units cells.

  1. (a) Assuming that the spherical atoms or ions in a primitive cubic unit cell just touch along the cube’s edges, calculate the percentage of occupied space within the unit cell. (Recall that the volume of a sphere is (4/3)πr3, where r is the radius of the sphere.)
  2. (b) Compare the percentage of occupied space in the primitive cell (pc) with the bcc and fcc unit cells. Based on this, will a metal in these three forms have the same or different densities? If different, in which is it most dense? In which is it least dense?

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Percentage of occupied space within the unit cell has to be calculated.

Concept introduction:

The packing efficiency can be calculated by the percent of space occupied by spheres present in a unit cell.packing efficiency=volumeoccupiedbythespherespresentinunitcellTotalvolumeoftheunitcell×100

Volume of the cube = a3

Answer to Problem 46GQ

Percentage of occupied space within the unit cell is given below

Packing efficiency of simple primitive cell =52.4%Packing efficiency of BCC unit cell =68%Packing efficiency of FCC unit cell =74%

More dense is FCC and least dense is simple primitive

Explanation of Solution

Calculate the packing efficiency of primitive cell

volumeofthesphere=43Πr3Volume of the cube =(2r)3One unit cell of the simple cubic contains only one atom therefore,volumeoffouratoms=1×43Πr3The packing efficiency can be calculated by the percent of space occupied by spheres present in a unit cell.Packing efficiency=volumeoccupiedbythespherespresentinunitcellTotalvolumeoftheunitcellPacking efficiency=43Πr3(2r)3×100Packing efficiencyofFCC=52.4%

Calculate the packing efficiency of FCC

One unit cell of the fcc contains four atoms therefore,

volumeofthesphere=43Πr3Volume of the cube =(2r2)3One unit cell of the fcc contains four atoms therefore,volumeoffouratoms=43Πr3The packing efficiency can be calculated by the percent of space occupied by spheres present in a unit cell.Packing efficiency=volumeoccupiedbythespherespresentinunitcellTotalvolumeoftheunitcellPacking efficiency=43Πr3(2r2)3×100Packing efficiencyofFCC=74%

Calculate the packing efficiency of BCC

volumeofthesphere=43Πr3Volume of the cube =(4r3)3One unit cell of the fcc contains two atoms therefore,volumeoffouratoms=43Πr3The packing efficiency can be calculated by the percent of space occupied by spheres present in a unit cell.Packing efficiency=volumeoccupiedbythespherespresentinunitcellTotalvolumeoftheunitcellPacking efficiency=43Πr3(4r3)3×100Packing efficiencyofBCC=68%

Packing efficiency of simple primitive cell =52.4%Packing efficiency of BCC unit cell =68%Packing efficiency of FCC unit cell =74%

By comparing packing efficiency percentage of the above three unit cell more the percentage, more the dense, therefore,

More dense is FCC and least dense is simple primitive

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

On comparing the percentage of occupied space in PC with BCC and FCC, most dense and least dense has to be identified.

Concept introduction:

The packing efficiency can be calculated by the percent of space occupied by spheres present in a unit cell.packing efficiency=volumeoccupiedbythespherespresentinunitcellTotalvolumeoftheunitcell×100

Volume of the cube = a3

Answer to Problem 46GQ

More dense is FCC and least dense is simple primitive

Explanation of Solution

Percentage of occupied space within the unit cell is given below

Packing efficiency of simple primitive cell =52.4%Packing efficiency of BCC unit cell =68%Packing efficiency of FCC unit cell =74%

By comparing packing efficiency percentage of the above three unit cell more the percentage, more the dense, therefore,

More dense is FCC and least dense is simple primitive

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①
Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.
NGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2

Chapter 12 Solutions

Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)

Ch. 12.2 - Prob. 4QCh. 12.3 - Prob. 1RCCh. 12.3 - Prob. 2RCCh. 12.3 - Prob. 3RCCh. 12.4 - Prob. 1RCCh. 12.5 - Prob. 1QCh. 12.5 - Prob. 2QCh. 12.5 - Prob. 3QCh. 12.5 - 1. Which of the following allotropes of carbon is...Ch. 12.5 - Prob. 2RCCh. 12.6 - Prob. 1RCCh. 12.6 - Suppose you wanted to cool 100. g of water from 20...Ch. 12.7 - Prob. 1RCCh. 12.7 - How many tin atoms are contained in the tetragonal...Ch. 12.7 - Prob. 2QCh. 12.7 - Prob. 3QCh. 12.7 - Prob. 4QCh. 12 - Outline a two-dimensional unit cell for the...Ch. 12 - Outline a two-dimensional unit cell for the...Ch. 12 - Prob. 3PSCh. 12 - Rutile, TiO2, crystallizes in a structure...Ch. 12 - Cuprite is a semiconductor. Oxide ions are at the...Ch. 12 - The mineral fluorite, which is composed of calcium...Ch. 12 - Calcium metal crystallizes in a face-centered...Ch. 12 - The density of copper metal is 8.95 g/cm3. If the...Ch. 12 - Potassium iodide has a face-centered cubic unit...Ch. 12 - A unit cell of cesium chloride is illustrated in...Ch. 12 - Predict the trend in lattice energy, from least...Ch. 12 - Prob. 12PSCh. 12 - To melt an ionic solid, energy must be supplied to...Ch. 12 - Which compound in each of the following pairs...Ch. 12 - Prob. 15PSCh. 12 - Prob. 16PSCh. 12 - Considering only the molecular orbitals formed by...Ch. 12 - Prob. 18PSCh. 12 - Prob. 19PSCh. 12 - Prob. 20PSCh. 12 - Prob. 21PSCh. 12 - Prob. 22PSCh. 12 - Prob. 23PSCh. 12 - Prob. 24PSCh. 12 - A diamond unit cell is shown here. Unit cell of...Ch. 12 - The structure of graphite is given in Figure...Ch. 12 - We have identified six types of solids (metallic,...Ch. 12 - Prob. 28PSCh. 12 - Classify each of the following materials as...Ch. 12 - Prob. 30PSCh. 12 - Benzene, C6H6, is an organic liquid that freezes...Ch. 12 - The specific heat capacity of silver is 0.235 J/g ...Ch. 12 - Prob. 33PSCh. 12 - Prob. 34PSCh. 12 - Prob. 35PSCh. 12 - If your air conditioner is more than several years...Ch. 12 - Sketch a phase diagram for O2 from the following...Ch. 12 - Tungsten crystallizes in the unit cell shown here....Ch. 12 - Silver crystallizes in a face-centered cubic unit...Ch. 12 - The unit cell shown here is for calcium carbide....Ch. 12 - The very dense metal iridium has a face-centered...Ch. 12 - Vanadium metal has a density of 6.11 g/cm3....Ch. 12 - Prob. 43GQCh. 12 - Prob. 44GQCh. 12 - Prob. 45GQCh. 12 - Consider the three types of cubic units cells. (a)...Ch. 12 - The solid-state structure of silicon is shown...Ch. 12 - The solid-state structure of silicon carbide is...Ch. 12 - Spinels are solids with the general formula AB2O4...Ch. 12 - Using the thermochemical data below and an...Ch. 12 - Prob. 51GQCh. 12 - Prob. 52GQCh. 12 - Prob. 53GQCh. 12 - Prob. 54GQCh. 12 - Prob. 55GQCh. 12 - Prob. 56GQCh. 12 - Like ZnS, lead(II) sulfide, PbS (commonly called...Ch. 12 - CaTiO3, a perovskite, has the structure below. (a)...Ch. 12 - Potassium bromide has the same lattice structure...Ch. 12 - Calculate the lattice energy of CaCl2 using a...Ch. 12 - Why is it not possible for a salt with the formula...Ch. 12 - Prob. 63SCQCh. 12 - Prob. 64SCQCh. 12 - Prob. 65SCQCh. 12 - Phase diagrams for materials that have allotropes...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Unit Cell Chemistry Simple Cubic, Body Centered Cubic, Face Centered Cubic Crystal Lattice Structu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=HCWwRh5CXYU;License: Standard YouTube License, CC-BY