Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 42PCE
Two 0.59-kg basketballs, each with a radius of 12 cm, are just touching. How much energy is required to change the separation between the centers of the basketballs to (a) 1.0 m and (b) 10.0 m? (Ignore any other gravitational interactions.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two 0.60-kgkg basketballs, each with a radius of 19 cmcm , are just touching
a) How much energy is required to change the separation between the centers of the basketballs to 1.0 mm ? (Ignore any other gravitational interactions.)
b) How much energy is required to change the separation between the centers of the basketballs to 13 mm ? (Ignore any other gravitational interactions.)
UP
Sending spaceships to the outer regions of the solar system requires large energies. The slingshot effect is a frequently used
method for speeding up spaceships without using much rocket fuel. To use this effect, the spaceship is diverted to pass around
one of the inner planets (such as Venus). If the spaceship is sent in the right direction, it will reach to greater speeds after it
passes around the planet. You will see the effect at play in this question.
A spaceship is sent with an initial velocity of is = (30 - j – 20 - î) km/s towards a planet. The planet is moving with velocity
úp = 20i km/s. After the encounter with the planet, the spaceship emerges to be moving along the +r direction (with a final
velocity of the form is = vgi). Find the final speed of the spaceship in units of km/s.
= 40
km/s. 40
Incorrect answer.
Hint 1: This is an elastic "collision". When you hear the word collision, you usually imagine something that happens quickly; in
contrast this collision happens…
1. The nearest stars, apart from the Sun, are light-years away from Earth. If we are to investigate these
stars, our space ships will have to travel at an appreciable fraction of the speed of light. (a) You are in
charge of estimating the energy required to accelerate a 10,000 kg capsule from rest to 10 percent of
the speed of light in one year. What is the minimum amount of energy that is required? (b) Compare
your estimate to the amount of energy that the United States uses in a year about 5 x 1020 ). (c)
Estimate the minimum average power required of the propulsion system. ((a) 4.5 x 1018 J, (b) 0.9%,
(c) 1.4 x 1011 W)
Chapter 12 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 12.1 - Rank the four systems shown in Figure 12-6 in...Ch. 12.2 - Suppose the Sun suddenly collapsed to half its...Ch. 12.3 - Satellite A orbits the Earth at the radius r,...Ch. 12.4 - Prob. 4EYUCh. 12.5 - Prob. 5EYUCh. 12.6 - If the radius of the Moons orbit around the Earth...Ch. 12 - It is often said that astronauts in orbit...Ch. 12 - When a person passes you on the street, you do not...Ch. 12 - Imagine bringing the tips of your index fingers...Ch. 12 - Does the radius vector of Mars sweep out the same...
Ch. 12 - When a communications satellite is placed in a...Ch. 12 - The Mass of Pluto On June 22, 1978, James Christy...Ch. 12 - Rockets are launched into space from Cape...Ch. 12 - One day in the future you may take a pleasure...Ch. 12 - Apollo astronauts orbiting the Moon at low...Ch. 12 - Prob. 10CQCh. 12 - The force exerted by the Sun on the Moon is more...Ch. 12 - Prob. 12CQCh. 12 - System A has masses m and m separated by a...Ch. 12 - A 6.3-kg bowling ball and a 7.1-kg bowling ball...Ch. 12 - A communications satellite with a mass of 520 kg...Ch. 12 - The Attraction of Ceres Ceres, the largest...Ch. 12 - In one hand you hold a 0.13-kg apple, in the other...Ch. 12 - Predict/Calculate A spaceship of mass m travels...Ch. 12 - At new moon, the Earth, Moon, and Sun are in a...Ch. 12 - When the Earth, Moon, and Sun form a right...Ch. 12 - Repeat the previous problem, this time finding the...Ch. 12 - Predict/Calculate Three 7.25-kg masses are at the...Ch. 12 - Predict/Calculate Four masses are positioned at...Ch. 12 - Suppose that three astronomical objects (1, 2, and...Ch. 12 - Find the acceleration due to gravity on the...Ch. 12 - At what altitude above the Earths surface is the...Ch. 12 - Two 6.4-kg bowling balls, each with a radius of...Ch. 12 - What is the acceleration due to Earths gravity at...Ch. 12 - Extrasolar Planet Gravity Kepler-62e is an...Ch. 12 - Predict/Calculate At a certain distance from the...Ch. 12 - The acceleration due to gravity on the Moons...Ch. 12 - Gravitational Tug of War At some point along the...Ch. 12 - Predict/Calculate An Extraterrestrial Volcano...Ch. 12 - Consider an asteroid with a radius of 19 km and a...Ch. 12 - Prob. 23PCECh. 12 - Predict/Explain The Earth-Moon Distance Is...Ch. 12 - Apollo Missions On Apollo missions to the Moon,...Ch. 12 - Prob. 26PCECh. 12 - An Extrasolar Planet In July of 1999 a planet was...Ch. 12 - Phobos, one of the moons of Mars, orbits at a...Ch. 12 - Predict/Calculate An Asteroid with Its Own Moon...Ch. 12 - GPS Satellites GPS (Global Positioning System)...Ch. 12 - Predict/Calculate Two satellites orbit the Earth,...Ch. 12 - Predict/Calculate Satellite A has a mass of 1000...Ch. 12 - Predict/Calculate The Martian moon Deimos has an...Ch. 12 - Predict/Calculate (a) Calculate the orbital period...Ch. 12 - Binary Stars Alpha Centauri A and Alpha Centauri B...Ch. 12 - Prob. 36PCECh. 12 - How much gravitational potential energy is...Ch. 12 - Predict/Explain (a) Is the amount of energy...Ch. 12 - Prob. 39PCECh. 12 - Calculate the gravitational potential energy of a...Ch. 12 - Prob. 41PCECh. 12 - Two 0.59-kg basketballs, each with a radius of 12...Ch. 12 - Find the minimum kinetic energy needed for a...Ch. 12 - Predict/Explain Suppose the Earth were to suddenly...Ch. 12 - Prob. 45PCECh. 12 - Prob. 46PCECh. 12 - Meteorites from Mars Several meteorites found in...Ch. 12 - What is the launch speed of a projectile that...Ch. 12 - A projectile launched vertically from the surface...Ch. 12 - Prob. 50PCECh. 12 - Predict/Calculate Halleys Comet Halleys comet,...Ch. 12 - The End of the Lunar Module On Apollo Moon...Ch. 12 - Prob. 53PCECh. 12 - Prob. 54PCECh. 12 - A projectile is launched vertically from the...Ch. 12 - Prob. 56PCECh. 12 - Predict/Calculate Two baseballs, each with a mass...Ch. 12 - On Earth, a person can jump vertically and rise to...Ch. 12 - The magnitude of the tidal force exerted on a...Ch. 12 - The magnitude of the tidal force between the...Ch. 12 - A dumbbell has a mass m on either end of a rod of...Ch. 12 - Prob. 62PCECh. 12 - CE You weigh yourself on a scale inside an...Ch. 12 - Figure 12-37 Problems 64 and 65 64. CE Rank...Ch. 12 - CE Referring to Figure 12-37, rank objects A, B,...Ch. 12 - CE The Crash of Skylab Skylab, the largest...Ch. 12 - Consider a system consisting of three masses on...Ch. 12 - An astronaut exploring a distant solar system...Ch. 12 - Predict/Calculate When the Moon is in its...Ch. 12 - Prob. 70GPCh. 12 - Suppose that each of the three masses in Figure...Ch. 12 - A Near Miss! In the early morning hours of June...Ch. 12 - Predict/Calculate Suppose a planet is discovered...Ch. 12 - Prob. 74GPCh. 12 - Walking into Orbit A spherical asteroid of average...Ch. 12 - Prob. 76GPCh. 12 - Find the orbital period of the binary star system...Ch. 12 - Exploring Mars In the not-too-distant future...Ch. 12 - Comet Wild 2 In 2004, a NASA spacecraft named...Ch. 12 - Predict/Calculate (a) If you want to launch a...Ch. 12 - Predict/Calculate A satellite is placed in Earth...Ch. 12 - Show that the force of gravity between the Moon...Ch. 12 - The astronomical unit AU is defined as the mean...Ch. 12 - Prob. 84GPCh. 12 - Predict/Calculate Space Station Orbit The...Ch. 12 - Approaching the ISS A Russian Soyuz module, with...Ch. 12 - Prob. 87GPCh. 12 - Prob. 88GPCh. 12 - Three identical stars, at the vertices of an...Ch. 12 - Prob. 90GPCh. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - Predict/Calculate Referring to Example 12-8...Ch. 12 - Predict/Calculate Referring to Example 12-17 (a)...Ch. 12 - Predict/Calculate Referring to Example 12-17...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A mixed culture of Escherichia coli and Penicillium chrysogenum is inoculated onto the following culture media....
Microbiology: An Introduction
In humans, hemophilia A (OMIM 306700) is an X-linked recessive disorder that affects the gene for factor VIII p...
Genetic Analysis: An Integrated Approach (3rd Edition)
Name each of the following:
Organic Chemistry (8th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
EVOLUTION CONNECTION Describe how gene flow, genetic drift, and natural sclection all can influence macroevolut...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Rank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forwardThe following pairs of energiesparticle 1: E, 2E; particle 2: E, 3E; particle 3: 2E, 4Erepresent the rest energy and total energy of three different particles. Rank the particles from greatest to least according to their (a) mass, (b) kinetic energy, and (c) speed.arrow_forward(a) Using data from Table 7.1, find the mass destroyed when the energy in a barrel of crude oil is released. (b) Given these barrels contain 200 liters and assuming the density of crude oil is 750 kg/m3, what is the ratio of mass destroyed to original mass, m/m ?arrow_forward
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardAn object having mass 900 kg and traveling at speed 0.850c collides with a stationary object having mass 1 400 kg. The two objects stick together. Find (a) the speed and (b) the mass of the composite object.arrow_forwardA particle of mass 2.0 kg moves under the influence of the force F(x)=(3/x)N. If its speed at x=2.0 m is v=6.0 m/s, what is its speed at x = 7.0 m?arrow_forward
- An enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forwardYou measure the volume of a cube at rest to be V0. You then measure the volume of the same cube as it passes you in a direction parallel to one side of the cube. The speed of the cube is 0.980c, so 5. Is the volume you measure close to (a) V0/25, (b) V0/5, (c) V0, (d) 5V0, or (e) 25V0?arrow_forwardTwo powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forward
- An electron has a kinetic energy 5 times greater than its rest energy. Find (a) its total energy and (b) its speed.arrow_forwardAn astronaut, of total mass 85.0 kg including her suit, stands on a spherical satellite of mass 375 kg, both at rest relative a nearby space station. She jumps at a speed of 2.56 m/s directly away from the satellite, as measured by an observer in the station. At what speed does that observer measure the satellite traveling in the opposite direction? (See Section 6.2.)arrow_forwardConsider these 4 Particles: Particle. Rest energy. Total energy 1 A A 2 B 2B 3 2C 4C 4 3D 5D Rank in order, from largest to smallest, the particles’ speed u1 to u4 Order: Explanation:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY