Concept explainers
Exploring Mars In the not-too-distant future astronauts will travel to Mars to carry out scientific explorations. As part of their mission, it is likely that a “geosynchronous” satellite will be placed above a given point on the Martian equator to facilitate communications. At what altitude above the surface of Mars should such a satellite orbit? (Note: The Martian “day” is 24.6229 hours. Other relevant information can be found in Appendix C.)
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology with Diseases by Body System (5th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry (7th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- Congratulations! You just derived a version of Kepler's Third Law for Mars! Using the mass of Mars in kilograms and converting the 4.5 hours to seconds, calculate the distance from the center of the planet. GM kg 4π² ]s)² 3 = And then determine the distance (in km) from the surface. r = rm + rs rs km = kmarrow_forwardCalculate the surface escape velocities for Mars. rM = 3.3× 106 m, MM = 6 × 1022 kg).arrow_forwardYou are a rover pilot on the crew of the initial exploration team sent to Kepler 22b,the first extrasolar planet discovered within the habitable zone of a sun-like star. Thescience team recently discovered liquid water on the surface. (Hurrah!) Your rover isat point A on the shore of a circular lake with radius 4 km collecting samples. Thescience team wants to send your rover to a point C diametrically opposite A. Therover can drive around the circumference of the lake at a rate of 4 km per hour andfly over the lake at a rate of 3 km per hour.(a) How long will it take the rover to fly across the lake?(b) How long will it take the rover to drive around the shore of the lake?You could also fly at an angle θ along a chord inside the circular lake, andcomplete the rest of the path driving along the circumference of the lake.(c) Find the length of the chord in terms of θ. How long will it take the drone totraverse the chord?(d) Find the length of the remaining shoreline after the cord in…arrow_forward
- The highest mountain on Mars is Olympus Mons, rising 22 000 meters above the Martian surface. If we were to throw an object horizontally off the mountain top, how long would it take to reach the surface? (Ignore atmospheric drag forces and use gMars = 3.72 m/s2.)arrow_forwardA)At what altitude would a geostationary sattelite need to be above the surface of Mars? Assume the mass of Mars is 6.39 x 1023 kg, the length of a martian solar day is 24 hours 39minutes 35seconds, the length of the sidereal day is 24hours 37minutes 22seconds, and the equatorial radius is 3396 km. The answer can be calculated using Newton's verison of Kepler's third law.arrow_forwardFor the following questions, start your analyses by considering at least Newton's Law of Gravitation, centripetal acceleration, Kepler's law or Energy Conservation. Take the Gravitational constant to be a. From Earth we can measure the radius of Mars using our telescopes. An estimate for it is 3.39 x 106 m. By sending an exploratory robot to Mars, we determined the acceleration due to gravity on its surface as 3.73 m/s?. Estimate the mass of Mars. b. The Earth revolves around the Sun once a year at a distance of 1.50 x 1011 m. Estimate the mass of the Sun. c. A rocket is launched straight up from Earth's surface at 2100 m/s. By ignoring air resistance, determine the maximum height it reaches?arrow_forward
- The semimajor axis of Mars orbit is about 1.52 astronomical units (au), where an au is the Earth's average distance from the Sun, meaning the semimajor axis of Earth's orbit is 1 au. To go from Earth to Mars and use the least energy from rocket fuel, the orbit has a semimajor axis of 1.26 au and an eccentricity of about 0.21. Starting at Earth's orbit, to follow this path we give the spacecraft an orbital velocity of 40 km/s. Which of the following describes this best? It arrives at Mars orbit at the same moment that Mars is there, and must speed up to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. It arrives at Mars orbit at the same moment that Mars is there, and must slow down to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. It flys past Mars on its trajectory unless it is braked by accelerating toward the Sun. It which leaves Earth when…arrow_forwardThe semimajor axis of Mars orbit is about 1.52 astronomical units (au), where an au is the Earth's average distance from the Sun, meaning the semimajor axis of Earth's orbit is 1 au. To go from Earth to Mars and use the least energy from rocket fuel, the orbit has a semimajor axis of 1.26 au and an eccentricity of about 0.21. Starting at Earth's orbit, to follow this path we give the spacecraft an orbital velocity of 40 km/s. Which of the following describes this best? a. It arrives at Mars orbit at the same moment that Mars is there, and must speed up to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. b. It arrives at Mars orbit at the same moment that Mars is there, and must slow down to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. c. It flys past Mars on its trajectory unless it is braked by accelerating toward the Sun. It which leaves Earth when Mars is nearly…arrow_forwardprep.com/modules/combined/ca.php?testid%31745&strand%38717&id%3DBM2470665&assignment_id%3D45039152#combined Save Ne D) 8.40x10° m If you were the first Mars explorer and discovered that when you dropped a hammer if took 0.68 s to fall 0.90 m to the ground, what would you calculate for the gravitational acceleration on Mars? 11) A) 4.32 x 102 m/s? B) 3.9 m/s C) 3.9 m/s D) 0.090 m/s 12) On the Highway 600 500 400 9300arrow_forward
- Mars has two moons orbiting it. One moon is named Deimos ( terror/dread from Greek mythology). Deimos has a mass of 2(10)^15 kg and is 23,460 km from Mars. The mass of Mars is 6.42 (10) ^23 kg a) What is the gravitational force between Mars and Deimos? (give this answer in Scientific Notation with 2 decimal places) b) What is the velocity of Deimos as it orbits Mars? ( give this answer in decimal form to 2 decimal places) a) = FG __________________ N b) V = ________________ m/sarrow_forwardWhat is the gravity of Mars, if the mass of the planet is 6.39x1023kg and the radius of the planet is 3397.2 km? What problems would there be on a mission to Mars?arrow_forwardThe International Space Station, which has a mass of 4.94×105 kg, orbits 258 miles above the Earth's surface, and completes one orbit every 94.3 minutes. What is the kinetic energy of the International Space Station in units of GJ (109 Joules)? (Note: don't forget to take into account the radius of the Earth!) Enter answer here GJarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning