Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 89GP
Three identical stars, at the vertices of an equilateral triangle, orbit about their common center of mass (Figure 12-41). Find the period of this orbital motion in terms of the orbital radius, R, and the mass of each star, M.
Figure 12-41 Problem 89
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Fig. 13-32, a square of edge length mị
20.0 cm is formed by four spheres of masses
m; = 5.00 g, m, = 3.00 g, m3 = 1.00 g, and
m4 = 5.00 g. In unit-vector notation, what is
the net gravitational force from them on a
central sphere with mass m, = 2.50 g?
•7 One dimension. In Fig. 13-33, two
point particles are fixed on an x axis sepa- mg
roted bu dictonged Porticle 4 hor morc m
•6
**68 @ Two small spaceships, each with mass m = 2000 kg, are in
the circular Earth orbit of Fig. 13-51, at an altitude h of 400 km.
Igor, the commander of one of the ships, arrives at any fixed point
in the orbit 90 s ahead of Picard, the
commander of the other ship. What
are the (a) period To and (b) speed
Vo of the ships? At point P in
Fig. 13-51, Picard fires an instanta-
neous burst in the forward direction,
reducing his ship's speed by 1.00%.
After this burst, he follows the ellip-
tical orbit shown dashed in the fig-
ure. What are the (c) kinetic
energy and (d) potential energy of
his ship immediately after the burst?
In Picard's new elliptical orbit, what are (e) the total
energy E, (f) the semimajor axis a, and (g) the orbital peripd T?
(h) How much earlier than Igor will Picard return to P?
Figure 13-51 Problem 68.
68
Two small spaceships, each with mass m = 2000 kg, are
in the circular Earth orbit of Fig. 13-50, at an altitude h of 400 km.
Igor, the commander of one of the
ships, arrives at any fixed point in
the orbit 90 s ahead of Picard, the
commander of the other ship. What
are the (a) period T, and (b) speed
Vo of the ships? At point P in Fig.
13-50, Picard fires an instantaneous
R
M
burst in the forward direction, re-
ducing his ship's speed by 1.00%.
After this burst, he follows the el-
liptical orbit shown dashed in the
figure. What are the (c) kinetic en-
ergy and (d) potential energy of his ship immediately after the
burst? In Picard's new elliptical orbit, what are (e) the total energy
E, (f) the semimajor axis a, and (g) the orbital period T? (h) How
much earlier than Igor will Picard return to P?
Fig. 13-50 Problem 68.
Chapter 12 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 12.1 - Rank the four systems shown in Figure 12-6 in...Ch. 12.2 - Suppose the Sun suddenly collapsed to half its...Ch. 12.3 - Satellite A orbits the Earth at the radius r,...Ch. 12.4 - Prob. 4EYUCh. 12.5 - Prob. 5EYUCh. 12.6 - If the radius of the Moons orbit around the Earth...Ch. 12 - It is often said that astronauts in orbit...Ch. 12 - When a person passes you on the street, you do not...Ch. 12 - Imagine bringing the tips of your index fingers...Ch. 12 - Does the radius vector of Mars sweep out the same...
Ch. 12 - When a communications satellite is placed in a...Ch. 12 - The Mass of Pluto On June 22, 1978, James Christy...Ch. 12 - Rockets are launched into space from Cape...Ch. 12 - One day in the future you may take a pleasure...Ch. 12 - Apollo astronauts orbiting the Moon at low...Ch. 12 - Prob. 10CQCh. 12 - The force exerted by the Sun on the Moon is more...Ch. 12 - Prob. 12CQCh. 12 - System A has masses m and m separated by a...Ch. 12 - A 6.3-kg bowling ball and a 7.1-kg bowling ball...Ch. 12 - A communications satellite with a mass of 520 kg...Ch. 12 - The Attraction of Ceres Ceres, the largest...Ch. 12 - In one hand you hold a 0.13-kg apple, in the other...Ch. 12 - Predict/Calculate A spaceship of mass m travels...Ch. 12 - At new moon, the Earth, Moon, and Sun are in a...Ch. 12 - When the Earth, Moon, and Sun form a right...Ch. 12 - Repeat the previous problem, this time finding the...Ch. 12 - Predict/Calculate Three 7.25-kg masses are at the...Ch. 12 - Predict/Calculate Four masses are positioned at...Ch. 12 - Suppose that three astronomical objects (1, 2, and...Ch. 12 - Find the acceleration due to gravity on the...Ch. 12 - At what altitude above the Earths surface is the...Ch. 12 - Two 6.4-kg bowling balls, each with a radius of...Ch. 12 - What is the acceleration due to Earths gravity at...Ch. 12 - Extrasolar Planet Gravity Kepler-62e is an...Ch. 12 - Predict/Calculate At a certain distance from the...Ch. 12 - The acceleration due to gravity on the Moons...Ch. 12 - Gravitational Tug of War At some point along the...Ch. 12 - Predict/Calculate An Extraterrestrial Volcano...Ch. 12 - Consider an asteroid with a radius of 19 km and a...Ch. 12 - Prob. 23PCECh. 12 - Predict/Explain The Earth-Moon Distance Is...Ch. 12 - Apollo Missions On Apollo missions to the Moon,...Ch. 12 - Prob. 26PCECh. 12 - An Extrasolar Planet In July of 1999 a planet was...Ch. 12 - Phobos, one of the moons of Mars, orbits at a...Ch. 12 - Predict/Calculate An Asteroid with Its Own Moon...Ch. 12 - GPS Satellites GPS (Global Positioning System)...Ch. 12 - Predict/Calculate Two satellites orbit the Earth,...Ch. 12 - Predict/Calculate Satellite A has a mass of 1000...Ch. 12 - Predict/Calculate The Martian moon Deimos has an...Ch. 12 - Predict/Calculate (a) Calculate the orbital period...Ch. 12 - Binary Stars Alpha Centauri A and Alpha Centauri B...Ch. 12 - Prob. 36PCECh. 12 - How much gravitational potential energy is...Ch. 12 - Predict/Explain (a) Is the amount of energy...Ch. 12 - Prob. 39PCECh. 12 - Calculate the gravitational potential energy of a...Ch. 12 - Prob. 41PCECh. 12 - Two 0.59-kg basketballs, each with a radius of 12...Ch. 12 - Find the minimum kinetic energy needed for a...Ch. 12 - Predict/Explain Suppose the Earth were to suddenly...Ch. 12 - Prob. 45PCECh. 12 - Prob. 46PCECh. 12 - Meteorites from Mars Several meteorites found in...Ch. 12 - What is the launch speed of a projectile that...Ch. 12 - A projectile launched vertically from the surface...Ch. 12 - Prob. 50PCECh. 12 - Predict/Calculate Halleys Comet Halleys comet,...Ch. 12 - The End of the Lunar Module On Apollo Moon...Ch. 12 - Prob. 53PCECh. 12 - Prob. 54PCECh. 12 - A projectile is launched vertically from the...Ch. 12 - Prob. 56PCECh. 12 - Predict/Calculate Two baseballs, each with a mass...Ch. 12 - On Earth, a person can jump vertically and rise to...Ch. 12 - The magnitude of the tidal force exerted on a...Ch. 12 - The magnitude of the tidal force between the...Ch. 12 - A dumbbell has a mass m on either end of a rod of...Ch. 12 - Prob. 62PCECh. 12 - CE You weigh yourself on a scale inside an...Ch. 12 - Figure 12-37 Problems 64 and 65 64. CE Rank...Ch. 12 - CE Referring to Figure 12-37, rank objects A, B,...Ch. 12 - CE The Crash of Skylab Skylab, the largest...Ch. 12 - Consider a system consisting of three masses on...Ch. 12 - An astronaut exploring a distant solar system...Ch. 12 - Predict/Calculate When the Moon is in its...Ch. 12 - Prob. 70GPCh. 12 - Suppose that each of the three masses in Figure...Ch. 12 - A Near Miss! In the early morning hours of June...Ch. 12 - Predict/Calculate Suppose a planet is discovered...Ch. 12 - Prob. 74GPCh. 12 - Walking into Orbit A spherical asteroid of average...Ch. 12 - Prob. 76GPCh. 12 - Find the orbital period of the binary star system...Ch. 12 - Exploring Mars In the not-too-distant future...Ch. 12 - Comet Wild 2 In 2004, a NASA spacecraft named...Ch. 12 - Predict/Calculate (a) If you want to launch a...Ch. 12 - Predict/Calculate A satellite is placed in Earth...Ch. 12 - Show that the force of gravity between the Moon...Ch. 12 - The astronomical unit AU is defined as the mean...Ch. 12 - Prob. 84GPCh. 12 - Predict/Calculate Space Station Orbit The...Ch. 12 - Approaching the ISS A Russian Soyuz module, with...Ch. 12 - Prob. 87GPCh. 12 - Prob. 88GPCh. 12 - Three identical stars, at the vertices of an...Ch. 12 - Prob. 90GPCh. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - If life exists elsewhere in our solar system, it...Ch. 12 - Predict/Calculate Referring to Example 12-8...Ch. 12 - Predict/Calculate Referring to Example 12-17 (a)...Ch. 12 - Predict/Calculate Referring to Example 12-17...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. The asteroid belt lies between the orb...
Cosmic Perspective Fundamentals
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
Heat lamps are commonly used to maintain foods at about 50C for as long as 12 hours in cafeteria serving lines....
Microbiology: An Introduction
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Answer Problems 3 through 5 by choosing one of the eight labeled acceleration vectors or selecting option I: = ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
If a compound has a molecular ion with an odd-numbered mass, then the compound contains an odd number of nitrog...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two stars of masses M and m, separated by a distance d, revolve in circular orbits about their center of mass (Fig. P11.50). Show that each star has a period given by T2=42d3G(M+m) Proceed as follows: Apply Newtons second law to each star. Note that the center-of-mass condition requires that Mr2 = mr1, where r1 + r2 = d.arrow_forward(a) Given that the period of the Moons orbit about the Earth is 27.32 days and the nearly constant distance between the center of the Earth and the center of the Moon is 3.84 108 m, use Equation 13.11 to calculate the mass of the Earth. (b) Why is the value you calculate a bit too large?arrow_forward15-113. An earth satellite of mass 700 kg is launched into a free-flight trajectory about the earth with an initial speed of va = 10 km/s when the distance from the center of the earth is ra = 15 Mm. If the launch angle at this position is dA = 70°, determine the speed vg of the satellite and its closest distance rg from the center of the earth. The earth has a mass M. = 5.976(10²4) kg. Hint: Under these conditions, the satellite is subjected only to the earth's gravitational force, F = GM ¸m,/r, Eq. 13–1. For part of the solution, use the conservation of energy. в TAarrow_forward
- White dwarf stars are produced by the collapse of regular stars, such as our sun, toward the end of their normal life. Suppose a star initially has the same mass as our sun and the same radius as that of the sun. Suppose further that it collapses into a white dwarf with a radius of 5000km. If the initial period of the star is the same 27 day period of our sun, what is the resulting period of the white dwarf?arrow_forwardThe Earth is 1.5 × 1011 m from the Sun and takes a year to make one complete orbit. It rotates on its own axis once per day. It can be treated approximately as a uniform-density sphere of mass 6 × 1024 kg and radius 6.4 × 106 m (actually, its center has higher density than the rest of the planet, and the Earth bulges out a bit at the equator). Using this crude approximation, calculate the following. What is the velocity center of mass?arrow_forwardOn July 15,2004,NaDa lunch the aura spacecraft(mass is 2970kg) to study the earth climate and atmospheric,the satellite was injected into an orbit 705 km above the earth surface,and we shall assume a circular orbit.the radius of the earth is 6371 km,the mass of the earth is 5.97x10^24 B) what is the period of the aura satarrow_forward
- The gravitational acceleration on the surface of earth of radius (R) mean density (p) is (a) (4n / 3) GR? p (b) (4т? / 3) GR? p (c) (2n / 3) GR? p (d) (4π / 3) GR ρarrow_forwardStars and black holes in a binary system orbit each other in circular orbits of radius r1 and r2 around their center of mass. Its mass is equal to 1.98x1030 kg, and its speed is 5.36 times faster than our Sun's. Furthermore, the visible star has an orbital period of 30 hours.(a) What is the apparent star's orbital radius, r1, in units of radii?In terms of MS, determine the black hole's mass m2. In the equation x3 = x(5a+5a)2, where an is the constant, x = 28a is a root.arrow_forwardAn exotic planet Vogsphere is known to have a mass that is 1/81 that of the Earth and a radius 0.25 that of the Earth. Astrophysicist Trillian built a rocket and decided to leave the planet and never to return. Given that the escape speed from the Earth is 11.2 km/s, with what speed must Trillian achieve his goal?arrow_forward
- The evolution of a star depends on its size. If a star is sufficiently large, the gravity forcesholding it together may be large enough to collapse it into a very dense object composed mostlyof neutrons. The density of such a neutron star is about 1014 times that of the earth. Suppose thata star initially had a radius about that of our sun, 7 × 108 km, and that it rotated once every 26 days,as our sun does. What would be the period of rotation (the time for 1 rev) if the star collapsed to aradius of 15 km?arrow_forwardI need helparrow_forwardSuppose a planet is discovered that has the same amount of mass in a given volume as the Earth, but has radius 1/5 REarth. Is the acceleration due to gravity on this planet more than, less than, or the same as the acceleration due to gravity on the Earth? Answer: The acceleration due to gravity on this planet is less than the acceleration due to gravity on the Earth. Why? Explain Calculate the acceleration due to gravity on this planet.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY