Concept explainers
Predict/Calculate Referring to Example 12-8 Suppose the mass of the Sun is suddenly doubled, but the Earth’s orbital radius remains the same. (a) Would the length of an Earth year increase, decrease, or stay the same? (b) Find the length of a year for the case of a Sun with twice the mass. (c) Suppose the Sun retains its present mass, but the mass of the Earth is doubled instead. Would the length of the year increase, decrease, or stay the same?
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Campbell Biology: Concepts & Connections (9th Edition)
Organic Chemistry (8th Edition)
Campbell Biology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forwardA massive black hole is believed to exist at the center of our galaxy (and most other spiral galaxies). Since the 1990s, astronomers have been tracking the motions of several dozen stars in rapid motion around the center. Their motions give a clue to the size of this black hole. a. One of these stars is believed to be in an approximately circular orbit with a radius of about 1.50 103 AU and a period of approximately 30 yr. Use these numbers to determine the mass of the black hole around which this star is orbiting, b. What is the speed of this star, and how does it compare with the speed of the Earth in its orbit? How does it compare with the speed of light?arrow_forwardUsing the solution from the previous problem, find the increase in rotational kinetic energy, given the core’s mass is 1.3 times that of out Sun. Where does this increase in kinetic energy come from?arrow_forward
- When Sedna was discovered in 2003, it was the most distant object known to orbit the Sun. Currently, it is moving toward the inner solar system. Its period is 10,500 years. Its perihelion distance is 75 AU. a. What is its semimajor axis in astronomical units? b. What is its aphelion distance?arrow_forwardAstronomical observatrions of our Milky Way galaxy indicate that it has a mass of about 8.01011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0104 light-years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way.arrow_forwardCheck Your Understanding Earth exerts a tidal force on the Moon. Is it greater than, the same as, or less than that of the Moon on Earth? Be careful in your response, as tidal forces arise from the difference in gravitational forces between one side and the other. Look at the calculations we performed for the tidal force on Earth and consider the values that would change significantly for the Moon. The diameter of the Moon is one-fourth that of Earth. Tidal forces on the Moon are not easy to detect, since there is no liquid on the surface.arrow_forward
- Astronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.1011 solar masses. A star orbiting on the galaxy's periphery is about 6.0104 light years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 instead, what is the mass of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies.arrow_forwardWhat is the difference between the force on a 1.0-kg mass on the near side of I0 has mean radius of 1821 km and a mean orbital radius about Jupiter of 421,700 km. (b) Compare this difference to that calculated for the difference for Earth due to the Moon calculated in Example 13.14. Tidal forces are the cause of I0 ’s volcanic activity.arrow_forwardTwo double stars, one having mass 1.0 Msun and the other 3.0 Msun, rotate about their common center of mass. Their separation is 6 light years. What is their period of revolution?arrow_forward
- What is the gravitational acceleration close to the surface of a planet with a mass of 2ME and radius of 2RE where ME, and RE are the mass and radius of Earth, respectively? Answer as a multiple of g, the magnitude of the gravitational acceleration near Earths surface. (See Section 7.5.)arrow_forwardAs thermonuclear fusion proceeds in its core, the Sun loses mass at a rate of 3.64 109 kg/s. During the 5 000-yr period of recorded history, by how much has the length of the year changed due to the loss of mass from the Sun? Suggestions: Assume the Earths orbit is circular. No external torque acts on the EarthSun system, so the angular momentum of the Earth is constant.arrow_forwardNeptune has a mass of 1.01026kg and is 4.5109km from the Sun with an orbital period of 165 years. Planetesimals in the outer primordial solar system 4.5 billion years ago coalesced into Neptune over hundreds of millions of years. If the primordial disk that evolved into our present day solar system had a radius of 1011km and if the matter that made up these planetesimals that later became Neptune was spread out evenly on the edges of it, what was the orbital period of the outer edges of the primordial disk?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax