Concept explainers
It is often said that astronauts in orbit experience weightlessness because they are beyond the pull of Earth’s gravity. Is this statement correct? Explain.
Answer to Problem 1CQ
Explanation of Solution
The astronaut in the orbit around the earth is under two forces that are gravitational force and centrifugal force. The gravitational force acts on the astronaut is due to the earth’s gravitational pull.
Due to the tangential velocity of the astronaut in orbit, the acceleration is in direction away from the earth. The centrifugal force due to this acceleration is also in direction away from the earth. Thus the astronaut in the orbit feels weightless because the centripetal force applied on the astronauts by earth’s gravitational force is balanced by the centrifugal force due to orbital velocity of the satellite.
Conclusion:
Therefore, the force due to earth gravitational pull on an object is zero at infinite distance, the net force on the astronauts is zero.
Want to see more full solutions like this?
Chapter 12 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Genetic Analysis: An Integrated Approach (3rd Edition)
Biology: Life on Earth with Physiology (11th Edition)
Chemistry: Structure and Properties (2nd Edition)
Anatomy & Physiology (6th Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
- (a) Find the magnitude of the gravitational force between a planet with mass 7.50 1024 kg and its moon, with mass 2.70 1022 kg, if the average distance between their centers is 2.80 108 m. (b) What is the acceleration of the moon towards the planet? (c) What is the acceleration of the planet towards the moon?arrow_forwardFigure P7.45 shows a picture of American astronaut Clay Anderson experiencing weightlessness on board the International Space Station. a. Most people have the misconception that a person in a spacecraft is weightless because he or she is no longer affected by gravity. Show that this premise cannot be true by computing the gravitational field of the Earth at an altitude of 200 km the typical altitude of a spacecraft in orbit. Compare this result with the gravitational field on the surface of the Earth. b. Why would astronauts in orbit experience weightlessness even if they are experiencing a gravitational field (and therefore a gravitational force)?arrow_forwardPlanetary orbits are often approximated as uniform circular motion. Figure P7.9 is a scaled representation of a planets orbit with a semimajor axis of 1.524 AU. a. Use Figure P7.9 to find the ratio of the Suns maximum gravitational field to its minimum gravitational field on the planets orbit. b. What is the ratio of the planets maximum speed to its minimum speed? c. Comment on the validity of approximating this orbit as uniform circular motion.arrow_forward
- For many years, astronomer Percival Lowell searched for a Planet X that might explain some of the perturbations observed in the orbit of Uranus. These perturbations were later explained when the masses of the outer planets and planetoids, particularly Neptune, became better measured (Voyager 2). At the time, however, Lowell had proposed the existence of a Planet X that orbited the Sun with a mean distance of 43 AU. With what period would this Planet X orbit the Sun?arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter. (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forward(a) Find the magnitude of the gravity force between a planet with mass 5.98 1024 kg and its moon, with mass 7.36 1022 kg, if the average distance between them is 3.84 108 m. (b) What is the acceleration of the moon toward the planet? (c) What is the acceleration of the planet toward the moon? (See Section 7.5.)arrow_forward
- Unreasonable Results (a) Based on Kepler's laws and information on the orbital characteristics of the Moon, calculate the orbital radius for an Earth satellite having a period of 1.00 h. (b) What is unreasonable about this result? (c) What is unreasonable or inconsistent about the premise of a 1.00 h orbit?arrow_forwardThe mass of the Earth is approximately 5.98 1024 kg, and the mass of the Moon is approximately 7.35 1022 kg. The Moon and the Earth are separated by about 3.84 108 m. a. What is the magnitude of the gravitational force that the Moon exerts on the Earth? b. If Serena is on the Moon and her mass is 25 kg, what is the magnitude of the gravitational force on Serena due to the Moon? The radius of the Moon is approximately 1.74 106 m.arrow_forwardAn object of mass m is located on the surface of a spherical planet of mass M and radius R. The escape speed from the planet does not depend on which of the following? (a) M (b) m (c) the density of the planet (d) R (e) the acceleration due to gravity on that planetarrow_forward
- The Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardSuppose an alien civilization has a space station in circular orbit around its home planet. The stations orbital radius is twice the planets radius, (a) If an alien astronaut has weight w just before launch from the surface, will she be weightless when she reaches the station and floats inside of it? (b) If not, what will be the ratio of her weight in orbit to her weight on the planets surface?arrow_forwardAccording to the National Academy of Sciences, the Earths surface temperature has risen about 1F since 1900. There is evidence that this climate change may be due to human activity. The organizers of World Jump Day argue that if the Earth were in a slightly larger orbit, we could avoid global warming and climate change. They propose that we move the Earth into this new orbit by jumping. The idea is to get people in a particular time zone to jump together. The hope is to have 600 million people jump in a 24-hour period. Lets see if it will work. Consider the Earth and its inhabitants to make up the system. a. Estimate the number of people in your time zone. Assume they all decide to jump at the same time; estimate the total mass of the jumpers. b. What is the net external force on the Earthjumpers system? c. Assume the jumpers use high-tech Flybar pogo sticks (Fig. P8.32), which allow them to jump 6 ft. What is the displacement of the Earth as a result of their jump? d. What happens to the Earth when the jumpers land?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning