Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.5, Problem 36P
A martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet $1. From then on, every time you win a bet, you bet $1 the next time. Each time you lose, you double your previous bet. Currently you have $63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A winner of the multi - state lotto won a one-time
payout and decided to invest part of it into an annuity. If
the winner invests $6, 700,000.00 into a 30 year annuity
that pays 3.5%, compounded monthly and makes each
month payments. What is the amount of each month
payments? The payment would be $ . (Round to 2
decimal places.)
Which of the following gambles has the largest objective risk?
20% chance of winning $100 and 80% chance of losing $100
50% chance of winning $10,000 and 50% chance of losing $10,000
50% chance of winning nothing and 50% chance of losing $100
50% chance of winning $100 and 50% chance of winning nothing
Assume that at the beginning of the year, you purchase an investment for $5,480 that pays $138 annual income. Also assume the investment’s value has decreased to $5,080 by the end of the year.
What is the rate of return for this investment?
Chapter 11 Solutions
Practical Management Science
Ch. 11.2 - If the number of competitors in Example 11.1...Ch. 11.2 - In Example 11.1, the possible profits vary from...Ch. 11.2 - Referring to Example 11.1, if the average bid for...Ch. 11.2 - See how sensitive the results in Example 11.2 are...Ch. 11.2 - In Example 11.2, the gamma distribution was used...Ch. 11.2 - Prob. 6PCh. 11.2 - In Example 11.3, suppose you want to run five...Ch. 11.2 - In Example 11.3, if a batch fails to pass...Ch. 11.3 - Rerun the new car simulation from Example 11.4,...Ch. 11.3 - Rerun the new car simulation from Example 11.4,...
Ch. 11.3 - In the cash balance model from Example 11.5, the...Ch. 11.3 - Prob. 12PCh. 11.3 - Prob. 13PCh. 11.3 - The simulation output from Example 11.6 indicates...Ch. 11.3 - Prob. 15PCh. 11.3 - Referring to the retirement example in Example...Ch. 11.3 - A European put option allows an investor to sell a...Ch. 11.3 - Prob. 18PCh. 11.3 - Prob. 19PCh. 11.3 - Based on Kelly (1956). You currently have 100....Ch. 11.3 - Amanda has 30 years to save for her retirement. At...Ch. 11.3 - In the financial world, there are many types of...Ch. 11.3 - Suppose you currently have a portfolio of three...Ch. 11.3 - If you own a stock, buying a put option on the...Ch. 11.3 - Prob. 25PCh. 11.3 - Prob. 26PCh. 11.3 - Prob. 27PCh. 11.3 - Prob. 28PCh. 11.4 - Prob. 29PCh. 11.4 - Seas Beginning sells clothing by mail order. An...Ch. 11.4 - Based on Babich (1992). Suppose that each week...Ch. 11.4 - The customer loyalty model in Example 11.9 assumes...Ch. 11.4 - Prob. 33PCh. 11.4 - Suppose that GLC earns a 2000 profit each time a...Ch. 11.4 - Prob. 35PCh. 11.5 - A martingale betting strategy works as follows....Ch. 11.5 - The game of Chuck-a-Luck is played as follows: You...Ch. 11.5 - You have 5 and your opponent has 10. You flip a...Ch. 11.5 - Assume a very good NBA team has a 70% chance of...Ch. 11.5 - Consider the following card game. The player and...Ch. 11.5 - Prob. 42PCh. 11 - You now have 5000. You will toss a fair coin four...Ch. 11 - You now have 10,000, all of which is invested in a...Ch. 11 - Suppose you have invested 25% of your portfolio in...Ch. 11 - Prob. 47PCh. 11 - Based on Marcus (1990). The Balboa mutual fund has...Ch. 11 - Prob. 50PCh. 11 - Prob. 52PCh. 11 - The annual demand for Prizdol, a prescription drug...Ch. 11 - Prob. 54PCh. 11 - The DC Cisco office is trying to predict the...Ch. 11 - A common decision is whether a company should buy...Ch. 11 - Suppose you begin year 1 with 5000. At the...Ch. 11 - You are considering a 10-year investment project....Ch. 11 - Play Things is developing a new Lady Gaga doll....Ch. 11 - An automobile manufacturer is considering whether...Ch. 11 - It costs a pharmaceutical company 75,000 to...Ch. 11 - Prob. 65PCh. 11 - Rework the previous problem for a case in which...Ch. 11 - Prob. 68PCh. 11 - The Tinkan Company produces one-pound cans for the...Ch. 11 - Prob. 70PCh. 11 - In this version of dice blackjack, you toss a...Ch. 11 - Prob. 76PCh. 11 - It is January 1 of year 0, and Merck is trying to...Ch. 11 - Suppose you are an HR (human resources) manager at...Ch. 11 - You are an avid basketball fan, and you would like...Ch. 11 - Suppose you are a financial analyst and your...Ch. 11 - Software development is an inherently risky and...Ch. 11 - Health care is continually in the news. Can (or...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Emma can either buy a used car or buy a new car. The used car costs $12,800 with a 40% chance she will run into mechanical problems that will cost $3500 to repair. The new car costs $17,595. Also, there is an 8% chance she will get into an accident in the next 5 years, which will cost 20% of the value of her car. If the cost of the accident is greater than $5000 she would only pay a deductible of $3000. What is the expected value of buying a new car? What is the expected value of buying a used car? Draw a probability tree.arrow_forwardConsider two equity market investors. The first investor is a hedge fund manager that relies on very active trading, and borrows from investment banks in order to leverage their investment. Their remuneration depends on total base fee earned by their fund as a percentage of net assets under management, plus a yearly bonus based on returns generated above a hurdle rate. The second investor is a high net-worth individual who is investing for their own retirement, which they anticipate to occur in 10 years or more. Identify three dimensions of risk that are likely to have significantly different impact on thesetwo investors. Explain the nature of the difference. Suggest aspects that each investor might monitor in order to control the risks most relevant to them.arrow_forwardIf a $900,000 30-year fully amortizing fixed rate mortgage loan from City National Bank has an annual interest rate of 6.25% with a monthly payment of $5,541.45, and a $900,000 15-year fully amortizing fixed rate mortgage loan from Wells Fargo Bank has an annual interest rate of 5.25% with a monthly payment of $7,234.90, a borrower should: a. Choose the 30-year fixed rate loan from City National Bank because of the lower monthly payments b. Make a careful analysis of all the terms and conditions of the available loans to determine which loan is better for that borrower under the circumstances, or if another loan or lender should be considered c. Choose a 7-year adjustable rate interest-only loan from PNC Bank instead with a low teaser interest rate of 1.0% for the first loan year d.Choose the 15-year fixed rate loan from Wells Fargo because of the lower interest ratearrow_forward
- A homebuyer recently obtained a loan to purchase a house. The lender offered a lower interest rate because the loan is secured. Why would a real estate loan be considered a secure loan? О The loan is backed by the property itself. If the borrower defaults on the loan, the lender can sell the property to get their money back. O In order to qualify for a home loan, the borrower must have good credit. Good credit is a form of security for the lender. O All real estate loans are considered unsecure. O Most home loans are long-term loans, which are considered low-risk from the lender's perspective.arrow_forwardYour answer is partially correct. An independent contractor for a transportation company needs to determine whether she should upgrade the vehicle she currently owns or trade her vehicle in to lease a new vehicle. If she keeps her vehicle, she will need to invest in immediate upgrades that cost $5,200 and it will cost $1,300 per year to operate at the end of year that follows. She will keep the vehicle for 5 years; at the end of this period, the upgraded vehicle will have a salvage value of $3,800. Alternatively, she could trade in her vehicle to lease a new vehicle. She estimates that her current vehicle has a trade-in value of $9,800 and that there will be $4,100 due at lease signing. She further estimates that it will cost $2,900 per year to lease and operate the vehicle. The independent contractor's MARR is 11%. Compute the EUAC of both the upgrade and lease alternatives using the insider perspective. Click here to access the TVM Factor Table Calculator. 1943.56 EUAC(keep): $…arrow_forwardYou are attempting to establish the utility that your boss assigns to a payoff of $1,000. You have established that the utility for a payoff of $0 is zero and the utility for a payoff of $10,000 is one. Your boss has just told you that they would be indifferent between a payoff of $1,000 and a lottery which has a payoff of $10,000 where the probability of losing is 0.7. What is your boss' utility for $1,000? (Round your answer to 1 decimal place.) Utility of $1,000arrow_forward
- All financial institutions provide different financial products and services that expose them to different types of risks that require different risk mitigating practices and techniques. These risks include; credit risk liquidity risk, interest rate risk, market risk, foreign exchange risk, solvency risks, operational risks and model risk. Which of the following is not true about credit risk? Select one: a. Performance risk is similar to credit risk. The borrower´s performance on an operation or specific project determines the degree of transaction risk. b. Measures based on the credit quality of the debt. As ratings are ordinal measures, they are sufficient to value credit risk. c. The risk of the issuers and borrowers are evaluated in prices in a capital market setting and can be seen visibly, or through credit spreads, or as add-ons to the risk-free rate. d. Credit risk is similar to country risk, which is essentially the risk crisis in a country. Examples of…arrow_forwardIn this version of dice blackjack, you toss a single die repeatedly and add up the sum of your dice tosses. Your goal is to come as close as possible to a total of 7 without going over. You may stop at any time. If your total is 8 or more, you lose. If your total is 7 or less, the house then tosses the die repeatedly. The house stops as soon as its total is 4 or more. If the house totals 8 or more, you win. Otherwise, the higher total wins. If there is a tie, the house wins. Consider the following strategies: Keep tossing until your total is 3 or more. Keep tossing until your total is 4 or more. Keep tossing until your total is 5 or more. Keep tossing until your total is 6 or more. Keep tossing until your total is 7 or more. For example, suppose you keep tossing until your total is 4 or more. Here are some examples of how the game might go: You toss a 2 and then a 3 and stop for total of 5. The house tosses a 3 and then a 2. You lose because a tie goes to the house. You toss a 3 and then a 6. You lose. You toss a 6 and stop. The house tosses a 3 and then a 2. You win. You toss a 3 and then a 4 for total of 7. The house tosses a 3 and then a 5. You win. Note that only 4 tosses need to be generated for the house, but more tosses might need to be generated for you, depending on your strategy. Develop a simulation and run it for at least 1000 iterations for each of the strategies listed previously. For each strategy, what are the two values so that you are 95% sure that your probability of winning is between these two values? Which of the five strategies appears to be best?arrow_forwardBased on Kelly (1956). You currently have 100. Each week you can invest any amount of money you currently have in a risky investment. With probability 0.4, the amount you invest is tripled (e.g., if you invest 100, you increase your asset position by 300), and, with probability 0.6, the amount you invest is lost. Consider the following investment strategies: Each week, invest 10% of your money. Each week, invest 30% of your money. Each week, invest 50% of your money. Use @RISK to simulate 100 weeks of each strategy 1000 times. Which strategy appears to be best in terms of the maximum growth rate? (In general, if you can multiply your investment by M with probability p and lose your investment with probability q = 1 p, you should invest a fraction [p(M 1) q]/(M 1) of your money each week. This strategy maximizes the expected growth rate of your fortune and is known as the Kelly criterion.) (Hint: If an initial wealth of I dollars grows to F dollars in 100 weeks, the weekly growth rate, labeled r, satisfies F = (I + r)100, so that r = (F/I)1/100 1.)arrow_forward
- You now have 5000. You will toss a fair coin four times. Before each toss you can bet any amount of your money (including none) on the outcome of the toss. If heads comes up, you win the amount you bet. If tails comes up, you lose the amount you bet. Your goal is to reach 15,000. It turns out that you can maximize your chance of reaching 15,000 by betting either the money you have on hand or 15,000 minus the money you have on hand, whichever is smaller. Use simulation to estimate the probability that you will reach your goal with this betting strategy.arrow_forwardIt is January 1 of year 0, and Merck is trying to determine whether to continue development of a new drug. The following information is relevant. You can assume that all cash flows occur at the ends of the respective years. Clinical trials (the trials where the drug is tested on humans) are equally likely to be completed in year 1 or 2. There is an 80% chance that clinical trials will succeed. If these trials fail, the FDA will not allow the drug to be marketed. The cost of clinical trials is assumed to follow a triangular distribution with best case 100 million, most likely case 150 million, and worst case 250 million. Clinical trial costs are incurred at the end of the year clinical trials are completed. If clinical trials succeed, the drug will be sold for five years, earning a profit of 6 per unit sold. If clinical trials succeed, a plant will be built during the same year trials are completed. The cost of the plant is assumed to follow a triangular distribution with best case 1 billion, most likely case 1.5 billion, and worst case 2.5 billion. The plant cost will be depreciated on a straight-line basis during the five years of sales. Sales begin the year after successful clinical trials. Of course, if the clinical trials fail, there are no sales. During the first year of sales, Merck believe sales will be between 100 million and 200 million units. Sales of 140 million units are assumed to be three times as likely as sales of 120 million units, and sales of 160 million units are assumed to be twice as likely as sales of 120 million units. Merck assumes that for years 2 to 5 that the drug is on the market, the growth rate will be the same each year. The annual growth in sales will be between 5% and 15%. There is a 25% chance that the annual growth will be 7% or less, a 50% chance that it will be 9% or less, and a 75% chance that it will be 12% or less. Cash flows are discounted 15% per year, and the tax rate is 40%. Use simulation to model Mercks situation. Based on the simulation output, would you recommend that Merck continue developing? Explain your reasoning. What are the three key drivers of the projects NPV? (Hint: The way the uncertainty about the first year sales is stated suggests using the General distribution, implemented with the RISKGENERAL function. Similarly, the way the uncertainty about the annual growth rate is stated suggests using the Cumul distribution, implemented with the RISKCUMUL function. Look these functions up in @RISKs online help.)arrow_forwardIf you own a stock, buying a put option on the stock will greatly reduce your risk. This is the idea behind portfolio insurance. To illustrate, consider a stock that currently sells for 56 and has an annual volatility of 30%. Assume the risk-free rate is 8%, and you estimate that the stocks annual growth rate is 12%. a. Suppose you own 100 shares of this stock. Use simulation to estimate the probability distribution of the percentage return earned on this stock during a one-year period. b. Now suppose you also buy a put option (for 238) on the stock. The option has an exercise price of 50 and an exercise date one year from now. Use simulation to estimate the probability distribution of the percentage return on your portfolio over a one-year period. Can you see why this strategy is called a portfolio insurance strategy? c. Use simulation to show that the put option should, indeed, sell for about 238.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License