Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.3, Problem 15P
Summary Introduction
To modify: The model and run the simulation.
Introduction: Simulation model is the digital prototype of the physical model that helps to
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The demand distribution for a company follows the below Table.
Demand
Probability
40,000
0.1
45,000
0.3
50,000
0.4
55,000
0.15
60,000
0.05
The unit price is 50$. The company produces 50000 units per month. The unit cost follows a continuous Uniform Distribution between $25 and $30. The fixed cost is a Normal Distribution with the mean=500000 and Standard Deviation=60000. Run the simulation 100 times and compute the statistics for the expected profit.
A borrower takes out a 30-year adjustable rate mortgage loan for $200,000 with monthly payments. The first two years of the loan have a "teaser" rate of 4 percent, after that the rate can reset with a 5 percent annual payment cap. On the reset date, the composite rate is 6 percent. Assume that the loan allows for negative amortization. What would be the outstanding balance on the loan at the end of Year 3?
Multiple Choice
$192,926
$190,074
$192,812
$192,337
What does the worst-case scenario simulation model tell you that Monte Carlo simulation does not? Why might this be important?
Chapter 11 Solutions
Practical Management Science
Ch. 11.2 - If the number of competitors in Example 11.1...Ch. 11.2 - In Example 11.1, the possible profits vary from...Ch. 11.2 - Referring to Example 11.1, if the average bid for...Ch. 11.2 - See how sensitive the results in Example 11.2 are...Ch. 11.2 - In Example 11.2, the gamma distribution was used...Ch. 11.2 - Prob. 6PCh. 11.2 - In Example 11.3, suppose you want to run five...Ch. 11.2 - In Example 11.3, if a batch fails to pass...Ch. 11.3 - Rerun the new car simulation from Example 11.4,...Ch. 11.3 - Rerun the new car simulation from Example 11.4,...
Ch. 11.3 - In the cash balance model from Example 11.5, the...Ch. 11.3 - Prob. 12PCh. 11.3 - Prob. 13PCh. 11.3 - The simulation output from Example 11.6 indicates...Ch. 11.3 - Prob. 15PCh. 11.3 - Referring to the retirement example in Example...Ch. 11.3 - A European put option allows an investor to sell a...Ch. 11.3 - Prob. 18PCh. 11.3 - Prob. 19PCh. 11.3 - Based on Kelly (1956). You currently have 100....Ch. 11.3 - Amanda has 30 years to save for her retirement. At...Ch. 11.3 - In the financial world, there are many types of...Ch. 11.3 - Suppose you currently have a portfolio of three...Ch. 11.3 - If you own a stock, buying a put option on the...Ch. 11.3 - Prob. 25PCh. 11.3 - Prob. 26PCh. 11.3 - Prob. 27PCh. 11.3 - Prob. 28PCh. 11.4 - Prob. 29PCh. 11.4 - Seas Beginning sells clothing by mail order. An...Ch. 11.4 - Based on Babich (1992). Suppose that each week...Ch. 11.4 - The customer loyalty model in Example 11.9 assumes...Ch. 11.4 - Prob. 33PCh. 11.4 - Suppose that GLC earns a 2000 profit each time a...Ch. 11.4 - Prob. 35PCh. 11.5 - A martingale betting strategy works as follows....Ch. 11.5 - The game of Chuck-a-Luck is played as follows: You...Ch. 11.5 - You have 5 and your opponent has 10. You flip a...Ch. 11.5 - Assume a very good NBA team has a 70% chance of...Ch. 11.5 - Consider the following card game. The player and...Ch. 11.5 - Prob. 42PCh. 11 - You now have 5000. You will toss a fair coin four...Ch. 11 - You now have 10,000, all of which is invested in a...Ch. 11 - Suppose you have invested 25% of your portfolio in...Ch. 11 - Prob. 47PCh. 11 - Based on Marcus (1990). The Balboa mutual fund has...Ch. 11 - Prob. 50PCh. 11 - Prob. 52PCh. 11 - The annual demand for Prizdol, a prescription drug...Ch. 11 - Prob. 54PCh. 11 - The DC Cisco office is trying to predict the...Ch. 11 - A common decision is whether a company should buy...Ch. 11 - Suppose you begin year 1 with 5000. At the...Ch. 11 - You are considering a 10-year investment project....Ch. 11 - Play Things is developing a new Lady Gaga doll....Ch. 11 - An automobile manufacturer is considering whether...Ch. 11 - It costs a pharmaceutical company 75,000 to...Ch. 11 - Prob. 65PCh. 11 - Rework the previous problem for a case in which...Ch. 11 - Prob. 68PCh. 11 - The Tinkan Company produces one-pound cans for the...Ch. 11 - Prob. 70PCh. 11 - In this version of dice blackjack, you toss a...Ch. 11 - Prob. 76PCh. 11 - It is January 1 of year 0, and Merck is trying to...Ch. 11 - Suppose you are an HR (human resources) manager at...Ch. 11 - You are an avid basketball fan, and you would like...Ch. 11 - Suppose you are a financial analyst and your...Ch. 11 - Software development is an inherently risky and...Ch. 11 - Health care is continually in the news. Can (or...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Based on Marcus (1990). The Balboa mutual fund has beaten the Standard and Poors 500 during 11 of the last 13 years. People use this as an argument that you can beat the market. Here is another way to look at it that shows that Balboas beating the market 11 out of 13 times is not unusual. Consider 50 mutual funds, each of which has a 50% chance of beating the market during a given year. Use simulation to estimate the probability that over a 13-year period the best of the 50 mutual funds will beat the market for at least 11 out of 13 years. This probability turns out to exceed 40%, which means that the best mutual fund beating the market 11 out of 13 years is not an unusual occurrence after all.arrow_forwardSuppose you simulate a gambling situation where you place many bets. On each bet, the distribution of your net winnings (loss if negative) is highly skewed to the left because there are some possibilities of really large losses but not much upside potential. Your only simulation output is the average of the results of all the bets. If you run @RISK with many iterations and look at the resulting histogram of this output, what will it look like? Why?arrow_forwardBig Hit Video must determine how many copies of a new video to purchase. Assume that the companys goal is to purchase a number of copies that maximizes its expected profit from the video during the next year. Describe how you would use simulation to shed light on this problem. Assume that each time a video is rented, it is rented for one day.arrow_forward
- If you want to replicate the results of a simulation model with Excel functions only, not @RISK, you can build a data table and let the column input cell be any blank cell. Explain why this works.arrow_forwardA martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet 1. From then on, every time you win a bet, you bet 1 the next time. Each time you lose, you double your previous bet. Currently you have 63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.arrow_forwardYou are considering a 10-year investment project. At present, the expected cash flow each year is 10,000. Suppose, however, that each years cash flow is normally distributed with mean equal to last years actual cash flow and standard deviation 1000. For example, suppose that the actual cash flow in year 1 is 12,000. Then year 2 cash flow is normal with mean 12,000 and standard deviation 1000. Also, at the end of year 1, your best guess is that each later years expected cash flow will be 12,000. a. Estimate the mean and standard deviation of the NPV of this project. Assume that cash flows are discounted at a rate of 10% per year. b. Now assume that the project has an abandonment option. At the end of each year you can abandon the project for the value given in the file P11_60.xlsx. For example, suppose that year 1 cash flow is 4000. Then at the end of year 1, you expect cash flow for each remaining year to be 4000. This has an NPV of less than 62,000, so you should abandon the project and collect 62,000 at the end of year 1. Estimate the mean and standard deviation of the project with the abandonment option. How much would you pay for the abandonment option? (Hint: You can abandon a project at most once. So in year 5, for example, you abandon only if the sum of future expected NPVs is less than the year 5 abandonment value and the project has not yet been abandoned. Also, once you abandon the project, the actual cash flows for future years are zero. So in this case the future cash flows after abandonment should be zero in your model.)arrow_forward
- Rerun the new car simulation from Example 11.4, but now introduce uncertainty into the fixed development cost. Let it be triangularly distributed with parameters 600 million, 650 million, and 850 million. (You can check that the mean of this distribution is 700 million, the same as the cost given in the example.) Comment on the differences between your output and those in the example. Would you say these differences are important for the company?arrow_forwardAssume that all of a companys job applicants must take a test, and that the scores on this test are normally distributed. The selection ratio is the cutoff point used by the company in its hiring process. For example, a selection ratio of 25% means that the company will accept applicants for jobs who rank in the top 25% of all applicants. If the company chooses a selection ratio of 25%, the average test score of those selected will be 1.27 standard deviations above average. Use simulation to verify this fact, proceeding as follows. a. Show that if the company wants to accept only the top 25% of all applicants, it should accept applicants whose test scores are at least 0.674 standard deviation above average. (No simulation is required here. Just use the appropriate Excel normal function.) b. Now generate 1000 test scores from a normal distribution with mean 0 and standard deviation 1. The average test score of those selected is the average of the scores that are at least 0.674. To determine this, use Excels DAVERAGE function. To do so, put the heading Score in cell A3, generate the 1000 test scores in the range A4:A1003, and name the range A3:A1003 Data. In cells C3 and C4, enter the labels Score and 0.674. (The range C3:C4 is called the criterion range.) Then calculate the average of all applicants who will be hired by entering the formula =DAVERAGE(Data, "Score", C3:C4) in any cell. This average should be close to the theoretical average, 1.27. This formula works as follows. Excel finds all observations in the Data range that satisfy the criterion described in the range C3:C4 (Score0.674). Then it averages the values in the Score column (the second argument of DAVERAGE) corresponding to these entries. See online help for more about Excels database D functions. c. What information would the company need to determine an optimal selection ratio? How could it determine the optimal selection ratio?arrow_forwardThe DC Cisco office is trying to predict the revenue it will generate next week. Ten deals may close next week. The probability of each deal closing and data on the possible size of each deal (in millions of dollars) are listed in the file P11_55.xlsx. Use simulation to estimate total revenue. Based on the simulation, the company can be 95% certain that its total revenue will be between what two numbers?arrow_forward
- The IRR is the discount rate r that makes a project have an NPV of 0. You can find IRR in Excel with the built-in IRR function, using the syntax =IRR(range of cash flows). However, it can be tricky. In fact, if the IRR is not near 10%, this function might not find an answer, and you would get an error message. Then you must try the syntax =IRR(range of cash flows, guess), where guess" is your best guess for the IRR. It is best to try a range of guesses (say, 90% to 100%). Find the IRR of the project described in Problem 34. 34. Consider a project with the following cash flows: year 1, 400; year 2, 200; year 3, 600; year 4, 900; year 5, 1000; year 6, 250; year 7, 230. Assume a discount rate of 15% per year. a. Find the projects NPV if cash flows occur at the ends of the respective years. b. Find the projects NPV if cash flows occur at the beginnings of the respective years. c. Find the projects NPV if cash flows occur at the middles of the respective years.arrow_forwardIf you own a stock, buying a put option on the stock will greatly reduce your risk. This is the idea behind portfolio insurance. To illustrate, consider a stock that currently sells for 56 and has an annual volatility of 30%. Assume the risk-free rate is 8%, and you estimate that the stocks annual growth rate is 12%. a. Suppose you own 100 shares of this stock. Use simulation to estimate the probability distribution of the percentage return earned on this stock during a one-year period. b. Now suppose you also buy a put option (for 238) on the stock. The option has an exercise price of 50 and an exercise date one year from now. Use simulation to estimate the probability distribution of the percentage return on your portfolio over a one-year period. Can you see why this strategy is called a portfolio insurance strategy? c. Use simulation to show that the put option should, indeed, sell for about 238.arrow_forwardAppliances Unlimited (AU) sells refrigerators. Anyrefrigerator that fails before it is three years old isreplaced for free. Of all refrigerators, 3% fail duringtheir first year of operation; 5% of all one-year-oldrefrigerators fail during their second year of operation;and 7% of all two-year-old refrigerators fail duringtheir third year of operation.a. Use simulation to estimate the fraction of all refrigeratorsthat will have to be replaced.b. It costs $500 to replace a refrigerator, and AU sells10,000 refrigerators per year. If the warranty periodwere reduced to two years, how much per year inreplacement costs would be saved?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License