Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.5, Problem 11.147P
Coal is discharged from the tailgate A of a dump truck with an initial velocity vA = 2 m/s ⦫50°. Determine the radius of curvature of the trajectory described by the coal (a) at point A, (b) at the point of the trajectory 1 m below point A.
Fig. P11.147
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Coal is discharged from the tailgate A of a dump truck with an initial velocity VA = 2 m/s Determine the radius of curvature of the trajectory described by the coal (a) at point A, (b) at the point of the trajectory 1 m below point A.
11.115
Copyright © McGraw-Hill Education. Permission required for reproduction or display.
An oscillating garden sprinkler which
discharges water with an initial velocity vo of
8 m/s is used to water a vegetable garden.
Determine the distance d to the farthest
Point B that will be watered and the
corresponding angle a when (a) the
vegetables are just beginning to grow, (b) the
height h of the corn is 1.8 m.
a
A
В
1.5 m
d
EXAMPLE 12.4
12
A metallic particle is subjected to the influence of a magnetic field as
it travels downward through a fluid that extends from plate A to
plate B, Fig. 12-5. If the particle is released from rest at the midpoint C,
s = 100 mm, and the acceleration is a = (4s) m/s², where s is in
meters, determine the velocity of the particle when it reaches plate B,
s = 200 mm, and the time it takes to travel from C to B.
A
100 mm
200 mm
Fig. 12-5
Chapter 11 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - Prob. 11.2PCh. 11.1 - Prob. 11.3PCh. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - Prob. 11.5PCh. 11.1 - Prob. 11.6PCh. 11.1 - A girl operates a radio-controlled model car in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Prob. 11.11PCh. 11.1 - Prob. 11.12PCh. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - Prob. 11.15PCh. 11.1 - Prob. 11.16PCh. 11.1 - Prob. 11.17PCh. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - Prob. 11.21PCh. 11.1 - Prob. 11.22PCh. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Prob. 11.27PCh. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v = v0[1 sin(t/T)]....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - 11.33 An airplane begins its take-off run at A...Ch. 11.2 - Prob. 11.34PCh. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Prob. 11.45PCh. 11.2 - Prob. 11.46PCh. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - Prob. 11.51PCh. 11.2 - Prob. 11.52PCh. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t = 0 and moves...Ch. 11.2 - Prob. 11.56PCh. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Prob. 11.58PCh. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - Prob. 11.60PCh. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - Prob. 11.62PCh. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.66PCh. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - The acceleration record shown was obtained for a...Ch. 11.3 - Prob. 11.71PCh. 11.3 - Prob. 11.72PCh. 11.3 - Prob. 11.73PCh. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - Prob. 11.75PCh. 11.3 - Prob. 11.76PCh. 11.3 - Prob. 11.77PCh. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - Prob. 11.83PCh. 11.3 - Prob. 11.84PCh. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Two road rally checkpoints A and B are located on...Ch. 11.3 - As shown in the figure, from t = 0 to t = 4 s, the...Ch. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Prob. 11.7CQCh. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - Prob. 11.91PCh. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - Prob. 11.97PCh. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine throws baseballs with...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - Prob. 11.101PCh. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - Prob. 11.104PCh. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h =...Ch. 11.4 - Prob. 11.109PCh. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - A worker uses high-pressure water to clean the...Ch. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Prob. 11.120PCh. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Prob. 11.123PCh. 11.4 - Prob. 11.124PCh. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - Prob. 11.126PCh. 11.4 - Prob. 11.127PCh. 11.4 - Conveyor belt A, which forms a 20 angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Prob. 11.130PCh. 11.4 - Prob. 11.131PCh. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - Prob. 11.9CQCh. 11.5 - A child walks across merry-go-round A with a...Ch. 11.5 - Prob. 11.133PCh. 11.5 - Determine the maximum speed that the cars of the...Ch. 11.5 - Prob. 11.135PCh. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - Prob. 11.140PCh. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Prob. 11.144PCh. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - Prob. 11.146PCh. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - A projectile is fired from point A with an initial...Ch. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - 11.153 and 11.154 A satellite will travel...Ch. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Knowing that the radius of the earth is 6370 km,...Ch. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - 11.162 The path of a particle P is a limaçon. The...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Some parasailing systems use a winch to pull the...Ch. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - Prob. 11.167PCh. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - Prob. 11.170PCh. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - 11.173 and 11.174 A particle moves along the...Ch. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - Prob. 11.177PCh. 11.5 - Prob. 11.178PCh. 11.5 - Prob. 11.179PCh. 11.5 - For the conic helix of Prob. 11.95, determine the...Ch. 11 - Prob. 11.182RPCh. 11 - A drag racing car starts from rest and moves down...Ch. 11 - Prob. 11.184RPCh. 11 - The velocities of commuter trains A and B are as...Ch. 11 - Knowing that slider block A starts from rest and...Ch. 11 - Prob. 11.187RPCh. 11 - A golfer hits a ball with an initial velocity of...Ch. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Sand is discharged at A from a conveyor belt and...Ch. 11 - The end point B of a boom is originally 5 m from...Ch. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A rocket travels along a parabolic path of 200 · y? – 1800 = 10 · x. The rocket moves at a constant - m vertical velocity of V = 1000 y = f(x) 10 10 20 30 40 50 60 70 80 a. Determine the y -position at x = 70 m. b. Determine the horizontal velocity, V/x, at x = 70 m. c. Determine the magnitude of the velocity, V , at x = 70 m. d. Determine the horizontal acceleration, ax, at x = 70 m.arrow_forwardProblem 12.228 At the instant shown, cars A and B are traveling at velocities of 40 m/s and 30 m/s, respectively. A is increasing its speed at 4 m/s², whereas the speed of B is decreasing at 3 m/s². The radius of curvature at B is pB = 200 m. (Figure 1) Figure L. 30° 1 of 1 Part A Determine the magnitude of the velocity of B with respect to A. Express your answer to three significant figures and include the appropriate units. VB/A Submit Part B = 0₂ = ol Submit μA Value Request Answer Determine the direction angle of the velocity of B with respect to A measured counterclockwise from the positive x axis. Express your answer in degrees to three significant figures. 7| ΑΣΦ ↓↑ Units Request Answer ? vec ? Oarrow_forwardCopyright © McGraw-Hill Education. Permission required for reproduction or display. The pitcher in a softball game throws a ball with an initial velocity vo of 108 km/h at an angle a with the horizontal. If the height of the ball at Point B is A В 0.6 m 0.68 m 0.68 m, determine (a) the angle a, (b) the angle O that the velocity of the ball at Point B forms with 14 m the horizontal.arrow_forward
- Q3/ 400 m PROBLEM 11.142 it= At a given instant in an airplane race, airplane A is flying horizontally in a straight line, and its speed is being increased at the rate of 8 m/s. Airplane B is flying at the same altitude as airplane A and, as it rounds a pylon, is following a circular path of 300-m radius. Knowing that at the given instant the speed of B is being decreased at the rate of 3 m/s, detemine, for the positions shown, (a) the velocity of B relative to A, (b) the acceleration of B relative to A. 450 km/h 300 m 30 540 km/harrow_forwardAn oscillating water sprinkler is operated at point A on an incline that forms an angle ß with the horizontal. The sprinkler discharges water with an initial velocity vo at an angle 0 with the vertical which varies from -6, to +6o. Knowing that vo-37 ft/s, 0,-50°, ß=15°, determine the horizontal distance between the sprinkler and points B and C which define the watered area. y B Re Rarrow_forwardInsert free body diagram. This is mandatoryarrow_forward
- Three seconds after automobile B passes through the intersection shown, automobile A passes through the same intersection. Given, the speed of automobile A is VA = 70.00 mi/h and automobile B is vg= 40.00 mi/h, respectively. Also, know that the speeds are constant for the automobiles during the encounter. N 70° 4 VB 3301 Problem 11.119.b Relative motion of particles with constant velocities-find change in position Determine the change in position of B with respect to A during a 4-s interval. (You must provide an answer before moving on to the next part.) The change in position of B with respect to A during a 4-s interval is ft at an angle ofarrow_forwardQ1: Coal is discharged from the tailgate A of a dump truck with an initial velocity VA= 2 m/s. Determine the radius of curvature of the trajectory described by the coal (a) at Point A, (b) at the point of the trajectory 1 m below Point A. 00 50°arrow_forwardhelp me with this ENGINEERING DYNAMIC question please.arrow_forward
- An oscillating water sprinkler is operated at point A on an incline that forms an angle ß with the horizontal. The sprinkler discharges water with an initial velocity v. at an angle 0 with the vertical which varies from -0, to +0. Knowing that v, 37 ft/s, 0, 50%. ß-15°, determine the horizontal distance between the sprinkler and points B and C which define the watered area.arrow_forwardAn oscillating garden sprinkler which discharges water with an initial velocity v0 of 8 m/s is used to water a vegetable garden. Determine the distance d to the farthest point B that will be watered and the corresponding angle α when (a) the vegetables are just beginning to grow, (b) the height h of the corn is 1.8 m.arrow_forwardDon't give a direct answer for this problem . You should include the Fbdarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY