Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.1, Problem 11.28P
Based on observations, the speed of a jogger can be approximated by the relation v = 7.5(1 − 0.04x)0.3, where v and x are expressed in km/h and kilometers, respectively. Knowing that x = 0 at t = 0, determine (a) the distance the jogger has run when t = 1 h, (b) the jogger’s acceleration in m/s2 at t = 0, (c) the time required for the jogger to run 6 km.
Fig. P11.28
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A human-powered vehicle (HPV) team wants to model the acceleration during the 260-m sprint race (the first 60 m is called a flying start) using a= A- Cv2, where a is acceleration in m/s2 and v is the velocity in m/s. From wind tunnel testing, they found that C = 0.0012 m-1 . Knowing that the cyclist is going 100 km/h at the 260-meter mark, what is the value of A?
Based on observations, the speed of a jogger can be approximated by the relation v= 7.5(1 - 0.04x) 0.3, where v and x are expressed in mi/h and miles, respectively. Knowing that x = 0 at t= 0, determine (a) the distance the jogger has run when t= 1 h, (b) the jogger’s acceleration in ft/s2 at t=0, (c) the time required for the jogger to run 6 mi.
A Based on observations, the speed of a jogger can be approximated by the relation v = 6.4 (1 − 0.03x)0.4 , where v and x are expressed in mi/h and miles, respectively. Knowing that x = 0 at t = 0, determine (a) the distance the jogger has run when t =1.5 h, (b) the jogger’s acceleration in ft/s2 at t = 0, (c) the time required for the jogger to run 5 mi.
Chapter 11 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - Prob. 11.2PCh. 11.1 - Prob. 11.3PCh. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - Prob. 11.5PCh. 11.1 - Prob. 11.6PCh. 11.1 - A girl operates a radio-controlled model car in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Prob. 11.11PCh. 11.1 - Prob. 11.12PCh. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - Prob. 11.15PCh. 11.1 - Prob. 11.16PCh. 11.1 - Prob. 11.17PCh. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - Prob. 11.21PCh. 11.1 - Prob. 11.22PCh. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Prob. 11.27PCh. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v = v0[1 sin(t/T)]....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - 11.33 An airplane begins its take-off run at A...Ch. 11.2 - Prob. 11.34PCh. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Prob. 11.45PCh. 11.2 - Prob. 11.46PCh. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - Prob. 11.51PCh. 11.2 - Prob. 11.52PCh. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t = 0 and moves...Ch. 11.2 - Prob. 11.56PCh. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Prob. 11.58PCh. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - Prob. 11.60PCh. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - Prob. 11.62PCh. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.66PCh. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - The acceleration record shown was obtained for a...Ch. 11.3 - Prob. 11.71PCh. 11.3 - Prob. 11.72PCh. 11.3 - Prob. 11.73PCh. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - Prob. 11.75PCh. 11.3 - Prob. 11.76PCh. 11.3 - Prob. 11.77PCh. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - Prob. 11.83PCh. 11.3 - Prob. 11.84PCh. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Two road rally checkpoints A and B are located on...Ch. 11.3 - As shown in the figure, from t = 0 to t = 4 s, the...Ch. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Prob. 11.7CQCh. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - Prob. 11.91PCh. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - Prob. 11.97PCh. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine throws baseballs with...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - Prob. 11.101PCh. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - Prob. 11.104PCh. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h =...Ch. 11.4 - Prob. 11.109PCh. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - Prob. 11.111PCh. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - A worker uses high-pressure water to clean the...Ch. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Prob. 11.120PCh. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Prob. 11.123PCh. 11.4 - Prob. 11.124PCh. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - Prob. 11.126PCh. 11.4 - Prob. 11.127PCh. 11.4 - Conveyor belt A, which forms a 20 angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Prob. 11.130PCh. 11.4 - Prob. 11.131PCh. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - Prob. 11.9CQCh. 11.5 - A child walks across merry-go-round A with a...Ch. 11.5 - Prob. 11.133PCh. 11.5 - Determine the maximum speed that the cars of the...Ch. 11.5 - Prob. 11.135PCh. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - Prob. 11.140PCh. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - Prob. 11.144PCh. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - Prob. 11.146PCh. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - A projectile is fired from point A with an initial...Ch. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - 11.153 and 11.154 A satellite will travel...Ch. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Knowing that the radius of the earth is 6370 km,...Ch. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - 11.162 The path of a particle P is a limaçon. The...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Some parasailing systems use a winch to pull the...Ch. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - Prob. 11.167PCh. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - Prob. 11.170PCh. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - 11.173 and 11.174 A particle moves along the...Ch. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - Prob. 11.177PCh. 11.5 - Prob. 11.178PCh. 11.5 - Prob. 11.179PCh. 11.5 - For the conic helix of Prob. 11.95, determine the...Ch. 11 - Prob. 11.182RPCh. 11 - A drag racing car starts from rest and moves down...Ch. 11 - Prob. 11.184RPCh. 11 - The velocities of commuter trains A and B are as...Ch. 11 - Knowing that slider block A starts from rest and...Ch. 11 - Prob. 11.187RPCh. 11 - A golfer hits a ball with an initial velocity of...Ch. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Sand is discharged at A from a conveyor belt and...Ch. 11 - The end point B of a boom is originally 5 m from...Ch. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Ex.5.2 The position of a particle which moves along a straight line is defined by the relation x = t3 - 6t2 -15t + 40, where x is expressed in m and t in sec. Determine (a) the time at which the velocity will be zero, (b) the position and distance traveled by the particle at that time, (c) the acceleration of the particle at that time, d) the distance traveled by the particle from t= 4 s to t = 6 s. %3Darrow_forwardAn automobile travels along a straight road at 15.65 m/s through a 11.18 m/s speed zone. A police car observed the automobile. At the instant that the two vehicles are abreast of each other, the police car starts to pursue the automobile at a constant acceleration of 1.96 m/s . The motorist noticed the police car in his rearview mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s . (Hint: The police will not go against the law.) a) Find the total time required for the police car to overtake the automobile. b) Find the total distance travelled by the police car while overtaking the automobile. c) Find the speed of the police car a the time it overtakes the automobile. d) Find the speed of theautomobile at the time it was overtaken by the police car.arrow_forwardAt a certain point in the reentry of the space shuttle into the earth's atmosphere, the total acceleration of the shuttle may be represented by two components. One component is the gravitational acceleration g = 9.60 m/s2 at this altitude. The second component equals 10.28 m/s² due to atmospheric resistance and is directed opposite to the velocity. The shuttle is at an altitude of 46.1 km and has reduced its orbital velocity of 28300 km/h to 16920 km/h in the direction 0 = 1.78°. For this instant, calculate the radius of curvature of the path and the rate i at which the speed is changing. Answers: p= v = i i km m/s²arrow_forward
- I need help with this question please. thank youarrow_forwardThe acceleration of a particle moving along the x-axis is given by the relation a = kt m/s?., where k is a constant, and i is in seconds. Supposed that v = -10 m/s, x = x, when / = 0 and x = 0, v = 0 when t = 6 s, determine (a) the value of the constants k and x,, (b) the position as a function of t. %3Darrow_forwardDr. Wang was doing donuts (i.e. driving in a circle) in his car over the weekend and used his iPhone to measure the acceleration he experienced (this is a true story). The plot below shows the lateral acceleration recorded by his iPhone. Knowing that he was maintaining a constant speed and that the radius of his donuts was 10 meters, determine how fast he was driving and approximately how many donuts (laps) did he completed in the 6 seconds shown?arrow_forward
- applied mechanics 2arrow_forwardStarting from rest, a bicyclist travels around a horizontal circular path, p= 10 m, at a speed of (0.09t2 + 0.1t) m/s, where t is in seconds. Part A Determine the magnitude of his velocity when he has traveled s = 3 m. Express your answer to three significant figures and include the appropriate units. HA ? Value Units v = Submit Request Answer Part B Determine the magnitude of his acceleration when he has traveled s = 3 m. Express your answer to three significant figures and include the appropriate units. HẢ Value Units a = Submit Request Answerarrow_forwardmoments = 0) in order to determine a force or moment requires a complete free body diagram. Absence of a free body diagram may result in a grade of 'O' for the problem. %3D 1. The acceleration of a particle is directly proportional to time, t, i.e., a = at where a is a constant. At t = 0 s, the position of the particle is -150 mm. Knowing that v = 200 mm/s and x = 75 mm whent = 3 s, determine the position and velocity when t = 5 s.arrow_forward
- 1) Some civil engineers are designing an Autobahn connecting Reno and Vegas to reduce the drive time. There are several hilly stretches between the two cities. They would like to keep the magnitude of acceleration on the drivers to be less than one g. They run a test where the speed of a biker decreased uniformly with time from 150 km/h at A to 100 km/h at B over 10 seconds. The radius of curvature for dip A is 200 m. If the magnitude of the total acceleration of the center of the mass of the bike is the same at B as at A, compute the radius of curvature rs of the hill in the road at B. The center of the mass of the car is 0.5 m from the road. [Ans. To Check: re-88.5m] TA = 200 m A VA= 150 km/h H = 0.5 m B VB = 100 km/h TB = ? marrow_forwardIn the development of racing cars, an important parameter is handling. And a measure of handling is turnability which is quantified by the so-called lateral acceleration measured in g's (g = acceleration due to gravity = 9.81 m/s). A prototype racing car is said to be capable of lateral accelerations of up to 1.6 g's. Determine its top speed on curved roads having a radius of curvature of: (a) 100 m, (b) 50 m, (c) 25 m, and (d) 10 m.arrow_forward3) Two particles, A & B, move along parallel rectilinear paths. At t=0 the particles are directly opposite one another. Particle A moves according to SA = 12t² - 4t³ inches and particle B moves with a constant speed of 12 inches/ second. (a) Determine the relative position of A with respect to B at t = 1 second. (b) Determine the relative velocity of A with respect to B at t = 1 second. ANS. SA/B = -4 inches VA/B = 0 inches/secarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY