
Concept explainers
(a)
Interpretation:
The labelled bond angles needs to be determined in the given compound 'Halothane' a general anesthetic.
Concept Introduction:
Bond angles can be determined by VSEPR theory based on hybridization but not accurately for certain oxides, metallic compounds and gaseous salts. Valence shell electron pair repulsion theory or VSEPR theory used in chemistry as a model for the prediction of shape of various molecules by knowing the electron pairs on the central atom. There will be repulsion between the electron pairs present on central atom, so to minimize the repulsion they adopt an arrangement with minimum repulsion, thus determining molecule's shape. And by knowing the shape we can easily determine the bond angles.
The following table should be used while determining the shapes:
Number of groups | Number of lone pairs | Shape | Bond angle | |
2 | 2 | 0 | Linear | |
3 | 3 | 0 | Trigonal planar | |
4 | 4 | 0 | Tetrahedral | |
4 | 3 | 1 | Trigonal pyramidal | |
4 | 2 | 2 | Bent |
(b)
Interpretation:
The labelled bond angles needs to be determined in the given compound 'Propene' a petroleum product.
Concept Introduction:
Bond angles can be determined by VSEPR theory based on hybridization but not accurately for certain oxides, metallic compounds and gaseous salts Valence shell electron pair repulsion theory or VSEPR theory used in chemistry as a model for the prediction of shape of various molecules by knowing the electron pairs on the central atom. There will be repulsion between the electron pairs present on central atom, so to minimize the repulsion they adopt an arrangement with minimum repulsion, thus determining molecule's shape. And by knowing the shape we can easily determine the bond angles.
The following table should be used while determining the shapes:
Number of groups | Number of atoms | Number of lone pairs | Shape | Bond angle |
2 | 2 | 0 | Linear | |
3 | 3 | 0 | Trigonal planar | |
4 | 4 | 0 | Tetrahedral | |
4 | 3 | 1 | Trigonal pyramidal | |
4 | 2 | 2 | Bent |
(c)
Interpretation:
The labelled bond angles needs to be determined in the given compound 'Phenol' a petroleum product.
Concept Introduction:
Bond angles can be determined by VSEPR theory based on hybridization but not accurately for certain oxides, metallic compounds and gaseous salts. Valence shell electron pair repulsion theory or VSEPR theory used in chemistry as a model for the prediction of shape of various molecules by knowing the electron pairs on the central atom. There will be repulsion between the electron pairs present on central atom, so to minimize the repulsion they adopt an arrangement with minimum repulsion, thus determining molecule's shape. And by knowing the shape we can easily determine the bond angles.
The following table should be used while determining the shapes:
Number of groups | Number of atoms | Number of lone pairs | Shape | Bond angle |
2 | 2 | 0 | Linear | |
3 | 3 | 0 | Trigonal planar | |
4 | 4 | 0 | Tetrahedral | |
4 | 3 | 1 | Trigonal pyramidal | |
4 | 2 | 2 | Bent |

Want to see the full answer?
Check out a sample textbook solution
Chapter 11 Solutions
General, Organic, & Biological Chemistry
- Calculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely: (a) 0.000259 M HClO4arrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃arrow_forward
- A. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forward
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forwardCan I please get help with this?arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
