Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.11, Problem 3P
One of the most amusing things a person can experience is when a car in neutral appears to go uphill when its brakes are released. Can this really happen or is it an optical illusion? How can you verify if a road is pitched uphill or downhill?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You are working as an engineer in a bearing systems design company. The flow of
lubricant inside a hydrodynamic bearing (p = 0.001 kg m-1 s-1) can be approximated
as a parallel, steady, two-dimensional, incompressible flow between two parallel plates.
The top plate, representing the moving part of the bearing, travels at a constant speed,
U, while the bottom plate remains stationary (Figure Q1). The plates are separated by
a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By
applying the above approximations to the Navier-Stokes equations and assuming that
end effects can be neglected, the horizontal velocity profile can be shown to be
y = +h
I
2h = 1 cm
x1
y = -h
u(y)
1 dP
2μ dx
-y² + Ay + B
moving plate
stationary plate
U
2
I2
L = 10 cm
Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm,
into the page.
Question 1
You are working as an engineer in a bearing systems design company. The flow of
lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated
as a parallel, steady, two-dimensional, incompressible flow between two parallel plates.
The top plate, representing the moving part of the bearing, travels at a constant speed,
U, while the bottom plate remains stationary (Figure Q1). The plates are separated by
a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By
applying the above approximations to the Navier-Stokes equations and assuming that
end effects can be neglected, the horizontal velocity profile can be shown to be
1 dP
u(y)
=
2μ dx
-y² + Ay + B
y= +h
Ꮖ
2h=1 cm
1
x1
y = −h
moving plate
stationary plate
2
X2
L = 10 cm
Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm,
into the page.
(a) By considering the appropriate boundary conditions, show that the constants take
the following forms:
U
U
1 dP
A =…
Question 2
You are an engineer working in the propulsion team for a supersonic civil transport
aircraft driven by a turbojet engine, where you have oversight of the design for the
engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can
operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are
asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of
14,000 m. For all parts of the question, you can assume that the flow path of air through
the engine has a circular cross section.
(a)
← intake
normal
shock
472 m/s
A B
(b)
50 m/s
H
472 m/s
B
engine
altitude: 14,000 m
exhaust nozzle
E
F
exit to
atmosphere
diameter: DE = 0.30 m
E
F
diameter: DF = 0.66 m
Figure Q2: Propulsion system for a supersonic aircraft.
a) When the aircraft is at an altitude of 14,000 m, use the International Standard
Atmosphere in the Module Data Book to state the local air pressure and tempera-
ture. Thus show that the aircraft speed…
Chapter 1 Solutions
Thermodynamics: An Engineering Approach
Ch. 1.11 - What is the difference between the classical and...Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - One of the most amusing things a person can...Ch. 1.11 - An office worker claims that a cup of cold coffee...Ch. 1.11 - 1–5C What is the difference between kg-mass and...Ch. 1.11 - Explain why the light-year has the dimension of...Ch. 1.11 - What is the net force acting on a car cruising at...Ch. 1.11 - 1–8 At 45° latitude, the gravitational...Ch. 1.11 - What is the weight, in N, of an object with a mass...Ch. 1.11 - A 3-kg plastic tank that has a volume of 0.2 m3 is...
Ch. 1.11 - Prob. 11PCh. 1.11 - Prob. 12PCh. 1.11 - Solve Prob. 113 using appropriate software. Print...Ch. 1.11 - A 4-kW resistance heater in a water heater runs...Ch. 1.11 - A 150-lbm astronaut took his bathroom scale (a...Ch. 1.11 - The gas tank of a car is filled with a nozzle that...Ch. 1.11 - Prob. 17PCh. 1.11 - A large fraction of the thermal energy generated...Ch. 1.11 - Prob. 19PCh. 1.11 - 1–20C A can or soft drink at room temperature is...Ch. 1.11 - What is the difference between intensive and...Ch. 1.11 - Is the number of moles of a substance contained in...Ch. 1.11 - Is the state of the air in an isolated room...Ch. 1.11 - The specific weight of a system is defined as the...Ch. 1.11 - What is a quasi-equilibrium process? What is its...Ch. 1.11 - Define the isothermal, isobaric, and isochoric...Ch. 1.11 - Prob. 27PCh. 1.11 - Prob. 28PCh. 1.11 - 1–29C What is specific gravity? How is it related...Ch. 1.11 - 1–31C What are the ordinary and absolute...Ch. 1.11 - Prob. 32PCh. 1.11 - Prob. 33PCh. 1.11 - Prob. 34PCh. 1.11 - Prob. 35PCh. 1.11 - Prob. 36PCh. 1.11 - Prob. 37PCh. 1.11 - Prob. 38PCh. 1.11 - The temperature of a system drops by 45F during a...Ch. 1.11 - Explain why some people experience nose bleeding...Ch. 1.11 - A health magazine reported that physicians...Ch. 1.11 - Someone claims that the absolute pressure in a...Ch. 1.11 - 1–43C Express Pascal’s law, and give a real-world...Ch. 1.11 - Consider two identical fans, one at sea level and...Ch. 1.11 - A vacuum gage connected to a chambee reads 35 kPa...Ch. 1.11 - Prob. 46PCh. 1.11 - 1–47E The pressure in a water line is 1500 kPa....Ch. 1.11 - 1–48E If the pressure inside a rubber balloon is...Ch. 1.11 - A manometer is used to measure the air pressure in...Ch. 1.11 - 1–50 The water in a tank is pressurized by air,...Ch. 1.11 - 1–51 Determine the atmospheric pressure at a...Ch. 1.11 - A 200-pound man has a total foot imprint area of...Ch. 1.11 - The gage pressure in a liquid at a depth of 3 m is...Ch. 1.11 - The absolute pressure in water at a depth of 9 m...Ch. 1.11 - 1–55E Determine the pressure exerted on the...Ch. 1.11 - 1–56 Consider a 70-kg woman who has a total foot...Ch. 1.11 - Prob. 57PCh. 1.11 - The barometer of a mountain hiker reads 750 mbars...Ch. 1.11 - The basic barometer can be used to measure the...Ch. 1.11 - Prob. 61PCh. 1.11 - A gas is contained in a vertical, frictionless...Ch. 1.11 - Reconsider Prob. 158. Using appropriate software,...Ch. 1.11 - Both a gage and a manometer are attached to a gas...Ch. 1.11 - Reconsider Prob. 161. Using appropriate software,...Ch. 1.11 - A manometer containing oil ( = 850 kg/m3) is...Ch. 1.11 - A mercury manometer ( = 13.600 kg/m3) is connected...Ch. 1.11 - Repeat Prob. 165 for a differential mercury height...Ch. 1.11 - The pressure in a natural gas pipeline is measured...Ch. 1.11 - Repeat Prob. 167E by replacing air with oil with a...Ch. 1.11 - Blood pressure is usually measure by wrapping a...Ch. 1.11 - The maximum blood pressure in the upper arm of a...Ch. 1.11 - Prob. 73PCh. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Consider a double-fluid manometer attached to an...Ch. 1.11 - Prob. 76PCh. 1.11 - Prob. 77PCh. 1.11 - Calculate the absolute pressure. P1, of the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the system shown in Fig. 177. If a change...Ch. 1.11 - What is the value of the engineering software...Ch. 1.11 - Determine a positive real root of this equation...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - A man goes to a traditional market to buy a steak...Ch. 1.11 - What is the weight of a 1-kg substance in N, kN,...Ch. 1.11 - A hydraulic lift is to be used to lift a 1900-kg...Ch. 1.11 - Prob. 92RPCh. 1.11 - Prob. 93RPCh. 1.11 - Prob. 94RPCh. 1.11 - Prob. 95RPCh. 1.11 - Prob. 96RPCh. 1.11 - It is well known that cold air feels much colder...Ch. 1.11 - Reconsider Prob. 1116E. Using appropriate...Ch. 1.11 - A vertical pistoncylinder device contains a gas at...Ch. 1.11 - An air-conditioning system requires a 35-m-long...Ch. 1.11 - The average body temperature of a person rises by...Ch. 1.11 - Balloons are often filled with helium gas because...Ch. 1.11 - Reconsider Prob. 1101. Using appropriate software,...Ch. 1.11 - Determine the maximum amount of load, in kg, the...Ch. 1.11 - The lower half of a 6-m-high cylindrical container...Ch. 1.11 - A vertical, frictionless pistoncylinder device...Ch. 1.11 - A pressure cooker cooks a lot faster than an...Ch. 1.11 - Prob. 108RPCh. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Prob. 110RPCh. 1.11 - A water pipe is connected to a double-U manometer...Ch. 1.11 - A gasoline line is connected to a pressure gage...Ch. 1.11 - Repeat Prob. 1110 for a pressure gage reading of...Ch. 1.11 - The average atmosphere pressure on earth is...Ch. 1.11 - Prob. 115RPCh. 1.11 - Prob. 116RPCh. 1.11 - Consider the flow of air through a wind turbine...Ch. 1.11 - The drag force exerted on a car by air depends on...Ch. 1.11 - An apple loses 3.6 kJ of heat as it cools per C...Ch. 1.11 - Consider a fish swimming 5 m below the free...Ch. 1.11 - The atmospheric pressures at the top and the...Ch. 1.11 - Consider a 2.5-m-deep swimming pool. The pressure...Ch. 1.11 - During a heating process, the temperature of an...Ch. 1.11 - At sea level, the weight of 1 kg mass in SI units...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Why is the study of database technology important?
Database Concepts (8th Edition)
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Porter’s competitive forces model: The model is used to provide a general view about the firms, the competitors...
Management Information Systems: Managing The Digital Firm (16th Edition)
This optional Google account security feature sends you a message with a code that you must enter, in addition ...
SURVEY OF OPERATING SYSTEMS
A byte is made up of eight a. CPUs b. addresses c. variables d. bits
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
How does a computers main memory differ from its auxiliary memory?
Java: An Introduction to Problem Solving and Programming (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- يكا - put 96** I need a detailed drawing with explanation or in wake, and the top edge of im below the free surface of the water. Determine the hydrothed if hydrostatic on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. =--20125 7357 750 X 2.01arrow_forwardYou are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be U y = +h У 2h = 1 cm 1 x1 y=-h u(y) = 1 dP 2μ dx -y² + Ay + B moving plate - U stationary plate 2 I2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page. (a) By considering the appropriate boundary conditions, show that the constants take the following forms: A = U 2h U 1 dP…arrow_forwardQuestion 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) normal shock 472 m/s A B (b) intake engine altitude: 14,000 m D exhaust nozzle→ exit to atmosphere 472 m/s 50 m/s B diameter: DE = 0.30 m EX diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. F a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed of…arrow_forward
- given below: A rectangular wing with wing twist yields the spanwise circulation distribution kbV1 roy) = kbv. (2) where k is a constant, b is the span length and V. is the free-stream velocity. The wing has an aspect ratio of 4. For all wing sections, the lift curve slope (ag) is 2 and the zero-lift angle of attack (a=0) is 0. a. Derive expressions for the downwash (w) and induced angle of attack a distributions along the span. b. Derive an expression for the induced drag coefficient. c. Calculate the span efficiency factor. d. Calculate the value of k if the wing has a washout and the difference between the geometric angles of attack of the root (y = 0) and the tip (y = tb/2) is: a(y = 0) a(y = ±b/2) = /18 Hint: Use the coordinate transformation y = cos (0)arrow_forward۳/۱ العنوان O не شكا +91x PU + 96852 A heavy car plunges into a lake during an accident and lands at the bottom of the lake on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of Deine the hadrostatic force on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. = -20125 750 x2.01arrow_forwardPlot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forward
- Q1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 marrow_forwardI need handwritten solution with sketches for eacharrow_forwardGiven answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY