(a)
Interpretation: The geometry of all the atoms (except hydrogens) has to be predicted for the given set of compounds.
Concept Introduction: According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule.
The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved.
Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the atom will be determined by counting the steric number followed by the hybridization state of that atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the atom has sp3 hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral.
If the steric number is 3, the atom has sp2 hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar.
If the steric number is 2, the atom has sp hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: The geometry for all the atoms in the given compound (a)
(b)
Interpretation: The geometry of all the atoms (except hydrogens) has to be predicted for the given set of compounds.
Concept Introduction: According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule.
The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved.
Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the atom will be determined by counting the steric number followed by the hybridization state of that atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the atom has sp3 hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral.
If the steric number is 3, the atom has sp2 hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar.
If the steric number is 2, the atom has sp hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: The geometry for all the atoms in the given compound (b)
(c)
Interpretation: The geometry of all the atoms (except hydrogens) has to be predicted for the given set of compounds.
Concept Introduction: According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule.
The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved.
Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the atom will be determined by counting the steric number followed by the hybridization state of that atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the atom has sp3 hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral.
If the steric number is 3, the atom has sp2 hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar.
If the steric number is 2, the atom has sp hybridization and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: The geometry for all the atoms in the given compound (c)
Trending nowThis is a popular solution!
Chapter 1 Solutions
Student Study Guide and Solutions Manual T/A Organic Chemistry
- 2H2S(g)+3O2(g)→2SO2(g)+2H2O(g) A 1.2mol sample of H2S(g) is combined with excess O2(g), and the reaction goes to completion. Question Which of the following predicts the theoretical yield of SO2(g) from the reaction? Responses 1.2 g Answer A: 1.2 grams A 41 g Answer B: 41 grams B 77 g Answer C: 77 grams C 154 g Answer D: 154 grams Darrow_forwardPart VII. Below are the 'HNMR, 13 C-NMR, COSY 2D- NMR, and HSQC 2D-NMR (similar with HETCOR but axes are reversed) spectra of an organic compound with molecular formula C6H1003 - Assign chemical shift values to the H and c atoms of the compound. Find the structure. Show complete solutions. Predicted 1H NMR Spectrum 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 f1 (ppm) Predicted 13C NMR Spectrum 100 f1 (ppm) 30 220 210 200 190 180 170 160 150 140 130 120 110 90 80 70 -26 60 50 40 46 30 20 115 10 1.0 0.9 0.8 0 -10arrow_forwardQ: Arrange BCC and Fec metals, in sequence from the Fable (Dr. R's slides) and Calculate Volume and Density. Aa BCC V 52 5 SFCCarrow_forward
- 4. Draw and label all possible isomers for [M(py)3(DMSO)2(CI)] (py = pyridine, DMSO dimethylsulfoxide).arrow_forwardThe emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY