A sprinter of mass m accelerates uniformly from rest to velocity v in t seconds. (a) Write a symbolic expression for the instantaneous mechanical power P required by the sprinter in terms of force F and velocity v . (b) Use Newton’s second law and a kinematic equation for the velocity at any time to obtain an expression for the instantaneous power in terms of m , a , and t only. (c) If a 75.0-kg sprinter reaches a speed of 11.0 m/s in 5.00 s, calculate the sprinter’s acceleration, assuming it to be constant. (d) Calculate the 75.0-kg sprinter’s instantaneous mechanical power as a function of time t and (e) give the maximum rate at which he burns Calories during the sprint, assuming 25% efficiency of conversion form food energy to mechanical energy.
A sprinter of mass m accelerates uniformly from rest to velocity v in t seconds. (a) Write a symbolic expression for the instantaneous mechanical power P required by the sprinter in terms of force F and velocity v . (b) Use Newton’s second law and a kinematic equation for the velocity at any time to obtain an expression for the instantaneous power in terms of m , a , and t only. (c) If a 75.0-kg sprinter reaches a speed of 11.0 m/s in 5.00 s, calculate the sprinter’s acceleration, assuming it to be constant. (d) Calculate the 75.0-kg sprinter’s instantaneous mechanical power as a function of time t and (e) give the maximum rate at which he burns Calories during the sprint, assuming 25% efficiency of conversion form food energy to mechanical energy.
Solution Summary: The author explains the expression for instantaneous mechanical power, which is equal to the product of force and velocity.
A sprinter of mass m accelerates uniformly from rest to velocity v in t seconds. (a) Write a symbolic expression for the instantaneous mechanical power P required by the sprinter in terms of force F and velocity v. (b) Use Newton’s second law and a kinematic equation for the velocity at any time to obtain an expression for the instantaneous power in terms of m, a, and t only. (c) If a 75.0-kg sprinter reaches a speed of 11.0 m/s in 5.00 s, calculate the sprinter’s acceleration, assuming it to be constant. (d) Calculate the 75.0-kg sprinter’s instantaneous mechanical power as a function of time t and (e) give the maximum rate at which he burns Calories during the sprint, assuming 25% efficiency of conversion form food energy to mechanical energy.
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.