College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 4CQ
(a)
To determine
Whether the woolen blanket keeps the beverages cool or not.
(b)
To determine
Whether the woolen blanket keeps the sister cool on a warm day or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the morning of a hot day, you and your friends decide to have a picnic. You buy some drinks and load them, with ice, in a cooler. In order to keep the drinks as cold as possible, one of your friends decides to cover the cooler with a wool blanket. Would this actually keep the drinks cold or it just going to warm them?
On a cold day, you grab a piece of metal and a fallen tree limb, both with bare hands. Both have been lying outside for a long time and are at the same temperature. The metal feels colder than the tree limb. Why?
When energy shortages occur, magazine articles sometimes urge us to keep our homes at a constant temperature day and night to conserve fuel. They argue that when we turn down the heat at night, the walls, ceilings, and other areas cool off and must be reheated in the morning. So if we keep the temperature constant, these parts of the house will not cool off and will not have to be reheated. Does this argument make sense? Would we really save energy by following this advice?
Chapter 11 Solutions
College Physics
Ch. 11.2 - Prob. 11.1QQCh. 11.4 - Prob. 11.2QQCh. 11.5 - Will an ice cube wrapped in a wool blanket remain...Ch. 11.5 - Two rods of the same length and diameter are made...Ch. 11.5 - Stars A and B have the same temperature, but star...Ch. 11 - Prob. 1WUECh. 11 - Physics Review An athlete lifts a 175-kg barbell...Ch. 11 - Prob. 3WUECh. 11 - Convert 3.50 103 cal to the equivalent number of...Ch. 11 - Prob. 5WUE
Ch. 11 - Prob. 6WUECh. 11 - A large room in a house holds 975 kg of dry air at...Ch. 11 - A wooden wall 4.00 cm thick made of pine with...Ch. 11 - A granite ball of radius 2.00 m and emissivity...Ch. 11 - Rub the palm of your hand on a metal surface for...Ch. 11 - In winter, why did the pioneers store an open...Ch. 11 - In warm climates that experience an occasional...Ch. 11 - Prob. 4CQCh. 11 - On a clear, cold night, why does frost tend to...Ch. 11 - The U.S. penny is now made of copper-coated zinc....Ch. 11 - Cups of water for coffee or tea can be warmed with...Ch. 11 - Prob. 8CQCh. 11 - A tile floor may feel uncomfortably cold to your...Ch. 11 - On a very hot day, its possible to cook an egg on...Ch. 11 - Concrete has a higher specific heat than does...Ch. 11 - You need to pick up a very hot cooking pot in your...Ch. 11 - A poker is a stiff, nonflammable rod used to push...Ch. 11 - Star A has twice the radius and twice the absolute...Ch. 11 - Prob. 15CQCh. 11 - The highest recorded waterfall in the world is...Ch. 11 - The temperature of a silver bar rises by 10.0C...Ch. 11 - Lake Erie contains roughly 4.00 1011 m3 of water....Ch. 11 - An aluminum rod is 20.0 cm long at 20.0C and has a...Ch. 11 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 11 - Prob. 6PCh. 11 - A 75-kg sprinter accelerates from rest to a speed...Ch. 11 - A sprinter of mass m accelerates uniformly from...Ch. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - A 1.5-kg copper block is given an initial speed of...Ch. 11 - A certain steel railroad rails 13 yd in length and...Ch. 11 - Prob. 14PCh. 11 - What mass of water at 25.0C must be allowed to...Ch. 11 - Lead pellets, each of mass 1.00 g, are heated to...Ch. 11 - Prob. 17PCh. 11 - In a showdown on the streets of Laredo, the good...Ch. 11 - Prob. 19PCh. 11 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 11 - A student drops two metallic objects into a 120-g...Ch. 11 - When a driver brakes an automobile, the friction...Ch. 11 - Equal 0.400-kg masses of lead and tin at 60.0C are...Ch. 11 - Prob. 24PCh. 11 - A 75-g ice cube al 0C is placed in 825 g of water...Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - A high-end gas stove usually has at least one...Ch. 11 - Prob. 34PCh. 11 - Steam at 100.C is added to ice at 0C. (a) Find the...Ch. 11 - The excess internal energy of metabolism is...Ch. 11 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 11 - A glass windowpane in a home is 0.62 cm thick and...Ch. 11 - A pond with a flat bottom has a surface area of...Ch. 11 - The thermal conductivities of human tissues vary...Ch. 11 - A steam pipe is covered with 1.50-cm-thick...Ch. 11 - The average thermal conductivity of the walls...Ch. 11 - Consider two cooking pots of the same dimensions,...Ch. 11 - A thermopane window consists of two glass panes,...Ch. 11 - A copper rod and an aluminum rod of equal diameter...Ch. 11 - A Styrofoam box has a surface area of 0.80 m and a...Ch. 11 - A rectangular glass window pane on a house has a...Ch. 11 - Prob. 48PCh. 11 - Measurements on two stars indicate that Star X has...Ch. 11 - The filament of a 75-W light bulb is at a...Ch. 11 - The bottom of a copper kettle has a 10.0-cm radius...Ch. 11 - A family comes home from a long vacation with...Ch. 11 - A 0.040.-kg ice cube floats in 0.200 kg of water...Ch. 11 - The surface area of an unclothed person is 1.50...Ch. 11 - A 200-g block of copper at a temperature of 90C is...Ch. 11 - Prob. 56APCh. 11 - A student measures the following data in a...Ch. 11 - Prob. 58APCh. 11 - A class of 10 students; taking an exam has a power...Ch. 11 - A class of 10 students taking an exam has a power...Ch. 11 - A bar of gold (Au) is in thermal contact with a...Ch. 11 - An iron plate is held against an iron, wheel so...Ch. 11 - Prob. 63APCh. 11 - Three liquids are at temperatures of 10C, 20C, and...Ch. 11 - Prob. 65APCh. 11 - A wood stove is used to heat a single room. The...Ch. 11 - Prob. 67APCh. 11 - Prob. 68APCh. 11 - The surface of the Sun has a temperature of about...Ch. 11 - The evaporation of perspiration is the primary...Ch. 11 - Prob. 71APCh. 11 - An ice-cube tray is filled with 75.0 g of water....Ch. 11 - An aluminum rod and an iron rod are joined end to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is a person able to remove a piece of dry aluminum foil from a hot oven with bare fingers, whereas a burn results if there is moisture on the foil?arrow_forwardBeryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forwardA common material for cushioning objects in packages is made by trapping bubbles of air between sheets of plastic. Is this material more effective at keeping the contents of the package from moving around inside the package on (a) a hot day, (b) a cold day, or (c) either hot or cold days?arrow_forward
- You are thinking ahead to spring when one of your friends is having an outdoor wedding. Your plan is to design the perfect lemonade for the event. The problem with lemonade is that you make it in room temperature and then add ice to cool it to a pleasant 10 oC. Usually, the ice melts diluting the lemonade too much. To help you solve this problem, you look up the specific heat capacity of water (1.0 cal/g oC), the specific heat capacity of ice (0.5 cal/g oC), and the latent heat of fusion of water (80 cal/g). You assume that the specific heat capacity of lemonade is the same as water. Since you will cool your lemonade in a Thermos jug, assume no heat is added to the lemonade from the environment. Using that information, you calculate how much water you get from all the ice melting if you make 6 quarts (5.6 kg) of lemonade at room temperature (23 oC) and add ice which comes straight from the freezer at -5.0 oC.arrow_forwardAt a local convenience store, you purchase a cup of coffee, but, at 98.4°C, it is too hot to drink. You add 46.9 g of ice that is −2.2°C to the 248 mL of coffee. What is the final temperature of the coffee? (Assume the heat capacity and density of the coffee are the same as water and the coffee cup is well insulated.)arrow_forwardA concrete road surface consists of 15-m long sections separated by gaps to allow for thermal expansion as the weather changes. suppose the expected road surface temperatures vary during the year from a low of -15 degrees Celsius to a high of 45 degrees Celsius. (Note: On a sunny day, road surface temperatures can be much higher than air temperatures.) The road is designed so that there remains a 2.0 mm gap between sections on the hottest day. What is the gap on the coldest day?arrow_forward
- Though Babatunde's family take oats for breakfast, her mum decides that today they would take tea. She prepares it and serves Babatunde in an aluminium cup of mass 120 g. Before serving the tea, the cup had a temperature of 20 °C. The 0.30 kg tea that is poured into the cup is at a temperature of 70 °C. Determine the final temperature when thermal equilibrium is attained between the tea and the cup, assuming no exchange of heat with the surounding? (Cen is 4190 J/kg. K, cal = 910 J/kg.K).arrow_forwardIf you lie on the ground at night with no cover, you get cold rather quickly. Much of this is due to energy loss by radiation. At night in a dry climate, the temperature of the sky can drop to -40°C. If you are lying on the ground with thin clothing that provides little insulation, the surface temperature of your skin and clothes will be about 30°C. Estimate the net rate at which your body loses energy by radiation to the night sky under these conditions.arrow_forwardIn a physics lab students are conducting an experiment to learn about the heat capacity of different materials. The first group is instructed to add 1.5-g lead pellets at a temperature of 92°C to 335 g of water at 16°C. A second group is given the same number of 1.5-g pellets as the first group, but these are now aluminum pellets. Assume that no heat is lost to or gained from the surroundings for either group. (a) If the final equilibrium temperature of the lead pellets and water is 23°C, how many whole pellets did the first group use in the experiment? The specific heat of lead is 0.0305 kcal/(kg · °C). pellets(b) Will the final equilibrium temperature for the second group be higher, lower, or the same as for the first group? The specific heat of aluminum is 0.215 kcal/(kg · °C). higherlower the same (c) What is the equilibrium temperature of the aluminum and water mixture for the second group? °Carrow_forward
- What will happen to the covered box in the summer? Look at Picture as referencearrow_forward#6. My buddy is starting to get hypothermic (body temperature 306 K) during an epic backcountry ski adventure. Since I'm quite warm (body temperature 310 K), I decide to get in a sleeping bag with him to try and warm him up. What heat transfer mechanism will be most responsible for heating him up? For simplicity, ignore any internal temperature differences across my body (that is, assume my skin temperature is also 310 K). Use num- bers to support your answer (for human skin, you can use the following values: surface area A = 1.50 m², emissivity € = 0.970, thickness d = 0.0250 m, thermal conductivty 0.200 ms.K) Jarrow_forward#6. My buddy is starting to get hypothermic (body temperature 306 K) during an epic backcountry ski adventure. Since I'm quite warm (body temperature 310 K), I decide to get in a sleeping bag with him to try and warm him up. What heat transfer mechanism will be most responsible for heating him up? For simplicity, ignore any internal temperature differences across my body (that is, assume my skin temperature is also 310 K). Use num- bers to support your answer (for human skin, you can use the following values: surface area A = 1.50 m², emissivity = 0.970, thickness d= 0.0250 m, thermal conductivty 0.200 ms.K)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Thermal Expansion and Contraction of Solids, Liquids and Gases; Author: Knowledge Platform;https://www.youtube.com/watch?v=9UtfegG4DU8;License: Standard YouTube License, CC-BY