College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 48P
To determine
The temperature up to which the sail gets warmed.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A spherical interplanetary probe, with a diameter of 2 m, is sent out into the solar system. The probe surface is made of material having an emissivity of 0.9 and an absorptivity of 0.1. Signals from the sensors monitoring the probe surface temperatures are indicating an average value of −40°C for a space temperature of 0 K. If the electronics inside the probe is generating heat at a rate of 100 W/m3, determine the incident radiation rate on the probe surface.
A 5-mm-diameter spherical ball at 50°C is covered by a 1-mm-thick plastic insulation (k = 0.13 W/m·K). The ball is exposed to a medium at 15°C, with a combined convection and radiation heat transfer coefficient of 20 W/m2·K. Determine if the plastic insulation on the ball will help or hurt heat transfer from the ball.
A lizard of mass 5.60 g is warming itself in the bright sunlight. It casts a shadow of 1.60 cm2 on a piece of paper held perpendicularly to the Sun’s rays. The intensity of sunlight at the top of the Earth's atmosphere is 1.40 × 103 W/m2, but only half of this energy penetrates the atmosphere and is absorbed by the lizard. The lizard has a specific heat of 4.20 J/(g·°C).
Assuming that there is no heat loss by the lizard (to simplify), how long must the lizard lie in the Sun in order to raise its temperature by 1.50°C?
Chapter 11 Solutions
College Physics
Ch. 11.2 - Prob. 11.1QQCh. 11.4 - Prob. 11.2QQCh. 11.5 - Will an ice cube wrapped in a wool blanket remain...Ch. 11.5 - Two rods of the same length and diameter are made...Ch. 11.5 - Stars A and B have the same temperature, but star...Ch. 11 - Prob. 1WUECh. 11 - Physics Review An athlete lifts a 175-kg barbell...Ch. 11 - Prob. 3WUECh. 11 - Convert 3.50 103 cal to the equivalent number of...Ch. 11 - Prob. 5WUE
Ch. 11 - Prob. 6WUECh. 11 - A large room in a house holds 975 kg of dry air at...Ch. 11 - A wooden wall 4.00 cm thick made of pine with...Ch. 11 - A granite ball of radius 2.00 m and emissivity...Ch. 11 - Rub the palm of your hand on a metal surface for...Ch. 11 - In winter, why did the pioneers store an open...Ch. 11 - In warm climates that experience an occasional...Ch. 11 - Prob. 4CQCh. 11 - On a clear, cold night, why does frost tend to...Ch. 11 - The U.S. penny is now made of copper-coated zinc....Ch. 11 - Cups of water for coffee or tea can be warmed with...Ch. 11 - Prob. 8CQCh. 11 - A tile floor may feel uncomfortably cold to your...Ch. 11 - On a very hot day, its possible to cook an egg on...Ch. 11 - Concrete has a higher specific heat than does...Ch. 11 - You need to pick up a very hot cooking pot in your...Ch. 11 - A poker is a stiff, nonflammable rod used to push...Ch. 11 - Star A has twice the radius and twice the absolute...Ch. 11 - Prob. 15CQCh. 11 - The highest recorded waterfall in the world is...Ch. 11 - The temperature of a silver bar rises by 10.0C...Ch. 11 - Lake Erie contains roughly 4.00 1011 m3 of water....Ch. 11 - An aluminum rod is 20.0 cm long at 20.0C and has a...Ch. 11 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 11 - Prob. 6PCh. 11 - A 75-kg sprinter accelerates from rest to a speed...Ch. 11 - A sprinter of mass m accelerates uniformly from...Ch. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - A 1.5-kg copper block is given an initial speed of...Ch. 11 - A certain steel railroad rails 13 yd in length and...Ch. 11 - Prob. 14PCh. 11 - What mass of water at 25.0C must be allowed to...Ch. 11 - Lead pellets, each of mass 1.00 g, are heated to...Ch. 11 - Prob. 17PCh. 11 - In a showdown on the streets of Laredo, the good...Ch. 11 - Prob. 19PCh. 11 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 11 - A student drops two metallic objects into a 120-g...Ch. 11 - When a driver brakes an automobile, the friction...Ch. 11 - Equal 0.400-kg masses of lead and tin at 60.0C are...Ch. 11 - Prob. 24PCh. 11 - A 75-g ice cube al 0C is placed in 825 g of water...Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - A high-end gas stove usually has at least one...Ch. 11 - Prob. 34PCh. 11 - Steam at 100.C is added to ice at 0C. (a) Find the...Ch. 11 - The excess internal energy of metabolism is...Ch. 11 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 11 - A glass windowpane in a home is 0.62 cm thick and...Ch. 11 - A pond with a flat bottom has a surface area of...Ch. 11 - The thermal conductivities of human tissues vary...Ch. 11 - A steam pipe is covered with 1.50-cm-thick...Ch. 11 - The average thermal conductivity of the walls...Ch. 11 - Consider two cooking pots of the same dimensions,...Ch. 11 - A thermopane window consists of two glass panes,...Ch. 11 - A copper rod and an aluminum rod of equal diameter...Ch. 11 - A Styrofoam box has a surface area of 0.80 m and a...Ch. 11 - A rectangular glass window pane on a house has a...Ch. 11 - Prob. 48PCh. 11 - Measurements on two stars indicate that Star X has...Ch. 11 - The filament of a 75-W light bulb is at a...Ch. 11 - The bottom of a copper kettle has a 10.0-cm radius...Ch. 11 - A family comes home from a long vacation with...Ch. 11 - A 0.040.-kg ice cube floats in 0.200 kg of water...Ch. 11 - The surface area of an unclothed person is 1.50...Ch. 11 - A 200-g block of copper at a temperature of 90C is...Ch. 11 - Prob. 56APCh. 11 - A student measures the following data in a...Ch. 11 - Prob. 58APCh. 11 - A class of 10 students; taking an exam has a power...Ch. 11 - A class of 10 students taking an exam has a power...Ch. 11 - A bar of gold (Au) is in thermal contact with a...Ch. 11 - An iron plate is held against an iron, wheel so...Ch. 11 - Prob. 63APCh. 11 - Three liquids are at temperatures of 10C, 20C, and...Ch. 11 - Prob. 65APCh. 11 - A wood stove is used to heat a single room. The...Ch. 11 - Prob. 67APCh. 11 - Prob. 68APCh. 11 - The surface of the Sun has a temperature of about...Ch. 11 - The evaporation of perspiration is the primary...Ch. 11 - Prob. 71APCh. 11 - An ice-cube tray is filled with 75.0 g of water....Ch. 11 - An aluminum rod and an iron rod are joined end to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A lizard of mass 6.10 g is warming itself in the bright sunlight. It casts a shadow of 1.60 cm2 on a piece of paper held perpendicularly to the Sun’s rays. The intensity of sunlight at the top of the Earth's atmosphere is 1.40 × 103 W/m2, but only half of this energy penetrates the atmosphere and is absorbed by the lizard. The lizard has a specific heat of 4.20 J/(g·°C). (a) What is the rate of increase of the lizard’s temperature? _____°C/s (b) Assuming that there is no heat loss by the lizard (to simplify), how long must the lizard lie in the Sun in order to raise its temperature by 2.60°C? _____minarrow_forwardTwo infinite parallel plates are at temperatures T1 = 540 C (Ɛ1 = 0.78) and T2 = 320 C (Ɛ2 = 0.56). (a) What is the net radiant heat exchange between the plates? (b) A radiation shield with emissivity Ɛ3 =0.68 is inserted between the plates. What is now the net radiant heat exchange between the plates 1 and 2?arrow_forwardA lizard of mass 4.30 g is warming itself in the bright sunlight. It casts a shadow of 1.60 cm2 on a piece of paper held perpendicularly to the Sun’s rays. The intensity of sunlight at the top of the Earth's atmosphere is 1.40 × 103 W/m2, but only half of this energy penetrates the atmosphere and is absorbed by the lizard. The lizard has a specific heat of 4.20 J/(g·°C). What is the rate of increase of the lizard’s temperature? Assuming that there is no heat loss by the lizard (to simplify), how long must the lizard lie in the Sun in order to raise its temperature by 2.80°C?arrow_forward
- An unused wood-burning stove has a constant temperature of 18 °C (291 K), which is also the temperature of the room in which the stove stands. The stove has an emissivity of 0.900 and a surface area of 3.50 m2. What is the net radiant power generated by the stove?arrow_forwardHow much power is radiated from each panel? Assume that the panels are in the shade so that the absorbed radiation will be negligible. Assume that the emissivity of the panels is 1.0.arrow_forwardRadiation from a Craft in Space.A space satellite in the shape of a sphere is traveling in outer space, where its surface temperature is held at 283.2 K. The sphere "sees" only outer space, which can be considered as a black body with a temperature of 0 K. The polished surface of the sphere has an emissivity of 0.1. Calculate the heat loss per m2by radiation.arrow_forward
- Size of a Light-Bulb Filament. The operating temperature of a tungsten filament in an incandescent light bulb is 2450 K, and its emissivity is 0.350. Find the surface area of the filament of a 150 W bulb if all the electrical energy consumed by the bulb is radiated by the filament as electromagnetic waves.arrow_forwardConsider a person standing in a room maintained at 20°C at all times. The inner surfaces of the walls, floors, and ceiling of the house are observed to be at an average temperature of 12°C in winter and 23°C in summer. Determine the rates of radiation heat transfer between this person and the surrounding surfaces in both summer and winter if the exposed surface area, emissivity, and the average outer surface temperature of the person are 1.6 m2, 0.95, and 32°C, respectively.arrow_forwardAn incandescent light bulb with a surface area of 0.0108 m2 and an emissivity of 0.87 has a surface temperature of 171.3°C. If the temperature of the surroundings are 21.2°C, what is the net rate of radiation heat transfer between the bulb and the surroundings? [round your final answer to one decimal place]? {o = 5.6704 x 10-8 W/(m²-K*)} 60 W T. S T surrarrow_forward
- An incandescent light bulb has a tungsten filament that is heated to a temperature of 3.00 x103 K when an electric current passes through it. If the surface area of the filament is approximately 1.00 x 10-4 m? and it has an emissivity of 0.370, what is the power radiated by the bulb?The Stefan-Boltzmann constant (0) is 5.670 x 10-8 W/(m 2. k4). Thank u!arrow_forwardGeologists measure conductive heat flow out of the earth by drilling holes (a few hundred meters deep) and measuring the temperature as a function of depth. Suppose that in a certain location the temperature increases by 20°C per kilometer of depth and the thermal conductivity of the rock is 2.5 W/m·K. What is the rate of heat conduction per square meter in this location? Assuming that this value is typical of other locations over all of earth's surface, at approximately what rate is the earth losing heat via conduction? (The radius of the earth is 6400 km.)arrow_forwardA person is standing outdoors in the shade where the temperature is 33 °C. What is the radiant energy absorbed per second by his head when it is covered with hair? The surface area of the hair (assumed to be flat) is 170 cm2 and its emissivity is 0.85.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning