College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 3CQ
In warm climates that experience an occasional hard freeze, fruit growers will spray the fruit trees with water, hoping that a layer of ice will form on the fruit. Why would such a layer be advantageous?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You put two uncovered pails of water, one containing hot water and one containing cold water, outside in below-freezing weather. The pail with the hot water will usually begin to freeze first. Why? What would happen if you covered the pails?
On a cold day, you grab a piece of metal and a fallen tree limb, both with bare hands. Both have been lying outside for a long time and are at the same temperature. The metal feels colder than the tree limb. Why?
When energy shortages occur, magazine articles sometimes urge us to keep our homes at a constant temperature day and night to conserve fuel. They argue that when we turn down the heat at night, the walls, ceilings, and other areas cool off and must be reheated in the morning. So if we keep the temperature constant, these parts of the house will not cool off and will not have to be reheated. Does this argument make sense? Would we really save energy by following this advice?
Chapter 11 Solutions
College Physics
Ch. 11.2 - Prob. 11.1QQCh. 11.4 - Prob. 11.2QQCh. 11.5 - Will an ice cube wrapped in a wool blanket remain...Ch. 11.5 - Two rods of the same length and diameter are made...Ch. 11.5 - Stars A and B have the same temperature, but star...Ch. 11 - Prob. 1WUECh. 11 - Physics Review An athlete lifts a 175-kg barbell...Ch. 11 - Prob. 3WUECh. 11 - Convert 3.50 103 cal to the equivalent number of...Ch. 11 - Prob. 5WUE
Ch. 11 - Prob. 6WUECh. 11 - A large room in a house holds 975 kg of dry air at...Ch. 11 - A wooden wall 4.00 cm thick made of pine with...Ch. 11 - A granite ball of radius 2.00 m and emissivity...Ch. 11 - Rub the palm of your hand on a metal surface for...Ch. 11 - In winter, why did the pioneers store an open...Ch. 11 - In warm climates that experience an occasional...Ch. 11 - Prob. 4CQCh. 11 - On a clear, cold night, why does frost tend to...Ch. 11 - The U.S. penny is now made of copper-coated zinc....Ch. 11 - Cups of water for coffee or tea can be warmed with...Ch. 11 - Prob. 8CQCh. 11 - A tile floor may feel uncomfortably cold to your...Ch. 11 - On a very hot day, its possible to cook an egg on...Ch. 11 - Concrete has a higher specific heat than does...Ch. 11 - You need to pick up a very hot cooking pot in your...Ch. 11 - A poker is a stiff, nonflammable rod used to push...Ch. 11 - Star A has twice the radius and twice the absolute...Ch. 11 - Prob. 15CQCh. 11 - The highest recorded waterfall in the world is...Ch. 11 - The temperature of a silver bar rises by 10.0C...Ch. 11 - Lake Erie contains roughly 4.00 1011 m3 of water....Ch. 11 - An aluminum rod is 20.0 cm long at 20.0C and has a...Ch. 11 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 11 - Prob. 6PCh. 11 - A 75-kg sprinter accelerates from rest to a speed...Ch. 11 - A sprinter of mass m accelerates uniformly from...Ch. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - A 1.5-kg copper block is given an initial speed of...Ch. 11 - A certain steel railroad rails 13 yd in length and...Ch. 11 - Prob. 14PCh. 11 - What mass of water at 25.0C must be allowed to...Ch. 11 - Lead pellets, each of mass 1.00 g, are heated to...Ch. 11 - Prob. 17PCh. 11 - In a showdown on the streets of Laredo, the good...Ch. 11 - Prob. 19PCh. 11 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 11 - A student drops two metallic objects into a 120-g...Ch. 11 - When a driver brakes an automobile, the friction...Ch. 11 - Equal 0.400-kg masses of lead and tin at 60.0C are...Ch. 11 - Prob. 24PCh. 11 - A 75-g ice cube al 0C is placed in 825 g of water...Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - A high-end gas stove usually has at least one...Ch. 11 - Prob. 34PCh. 11 - Steam at 100.C is added to ice at 0C. (a) Find the...Ch. 11 - The excess internal energy of metabolism is...Ch. 11 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 11 - A glass windowpane in a home is 0.62 cm thick and...Ch. 11 - A pond with a flat bottom has a surface area of...Ch. 11 - The thermal conductivities of human tissues vary...Ch. 11 - A steam pipe is covered with 1.50-cm-thick...Ch. 11 - The average thermal conductivity of the walls...Ch. 11 - Consider two cooking pots of the same dimensions,...Ch. 11 - A thermopane window consists of two glass panes,...Ch. 11 - A copper rod and an aluminum rod of equal diameter...Ch. 11 - A Styrofoam box has a surface area of 0.80 m and a...Ch. 11 - A rectangular glass window pane on a house has a...Ch. 11 - Prob. 48PCh. 11 - Measurements on two stars indicate that Star X has...Ch. 11 - The filament of a 75-W light bulb is at a...Ch. 11 - The bottom of a copper kettle has a 10.0-cm radius...Ch. 11 - A family comes home from a long vacation with...Ch. 11 - A 0.040.-kg ice cube floats in 0.200 kg of water...Ch. 11 - The surface area of an unclothed person is 1.50...Ch. 11 - A 200-g block of copper at a temperature of 90C is...Ch. 11 - Prob. 56APCh. 11 - A student measures the following data in a...Ch. 11 - Prob. 58APCh. 11 - A class of 10 students; taking an exam has a power...Ch. 11 - A class of 10 students taking an exam has a power...Ch. 11 - A bar of gold (Au) is in thermal contact with a...Ch. 11 - An iron plate is held against an iron, wheel so...Ch. 11 - Prob. 63APCh. 11 - Three liquids are at temperatures of 10C, 20C, and...Ch. 11 - Prob. 65APCh. 11 - A wood stove is used to heat a single room. The...Ch. 11 - Prob. 67APCh. 11 - Prob. 68APCh. 11 - The surface of the Sun has a temperature of about...Ch. 11 - The evaporation of perspiration is the primary...Ch. 11 - Prob. 71APCh. 11 - An ice-cube tray is filled with 75.0 g of water....Ch. 11 - An aluminum rod and an iron rod are joined end to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two concrete spans that form a bridge of length L are placed end to end so that no room is allowed for expansion (Fig. P16.63a). If a temperature increase of T occurs, what is the height y to which the spans rise when they buckle (Fig. P16.63b)?arrow_forwardBecause water is a much more efficient thermal conductor than air, marine mammals often have thick layers of blubber (under-skin fat, with a thermal conductivity of 0.250 W/(m °C)) and a small surface-to-volume ratio to minimize the loss of energy by heat to the surrounding water. The beluga whale, Delphinapterus leucas, is a species of whale native to the Arctic and sub-Arctic regions. The core body temperature of this whale is usually 37.0°C, and its basal metabolic rate (BMR) is 7.30 x 104 kJ/day. The beluga often finds itself near the Arctic ice sheet, where the water temperature is very close to 0°C. (a) Modeling the body of the whale as a cylinder of length h = 4.10 m and diameter d = 1.20 m,estimate the average thickness (in cm) of the beluga's blubber required to keep the core temperature of the whale fixed at 37.0°C. (For simplicity, treat the blubber layer on the lateral cylindrical surface as a rectangular slab with a constant area. Take the front and rear surfaces of the…arrow_forwardA 5000 kg African elephant has a resting metabolic rate of 2500 W. On a hot day, the elephant’s environment is likely to be nearly the same temperature as the animal itself, so cooling by radiation is not effective. The only plausible way to keep cool is by evaporation, and elephants spray water on their body to accomplish this. If this is the only possible means of cooling, how many kilograms of water per hour must be evaporated from an elephant’s skin to keep it at a constant temperature?arrow_forward
- Students on a spring break picnic bring a cooler that contains 5.1 kg of ice at 0.0 °C. The cooler has walls that are 3.8 cm thick and are made of Styrofoam, which has a thermal conductivity of 0.030 W/(m. C°). The surface area of the cooler is 1.5 m², and it rests in the shade where the air temperature is 21 °C. (a) Find the rate at which heat flows into the cooler.arrow_forward#6. My buddy is starting to get hypothermic (body temperature 306 K) during an epic backcountry ski adventure. Since I'm quite warm (body temperature 310 K), I decide to get in a sleeping bag with him to try and warm him up. What heat transfer mechanism will be most responsible for heating him up? For simplicity, ignore any internal temperature differences across my body (that is, assume my skin temperature is also 310 K). Use num- bers to support your answer (for human skin, you can use the following values: surface area A = 1.50 m², emissivity = 0.970, thickness d= 0.0250 m, thermal conductivty 0.200 ms.K)arrow_forward#6. My buddy is starting to get hypothermic (body temperature 306 K) during an epic backcountry ski adventure. Since I'm quite warm (body temperature 310 K), I decide to get in a sleeping bag with him to try and warm him up. What heat transfer mechanism will be most responsible for heating him up? For simplicity, ignore any internal temperature differences across my body (that is, assume my skin temperature is also 310 K). Use num- bers to support your answer (for human skin, you can use the following values: surface area A = 1.50 m², emissivity e = 0.970, thickness d = 0.0250 m, thermal conductivty 0.200 ) m-s-Karrow_forward
- #6. My buddy is starting to get hypothermic (body temperature 306 K) during an epic backcountry ski adventure. Since I'm quite warm (body temperature 310 K), I decide to get in a sleeping bag with him to try and warm him up. What heat transfer mechanism will be most responsible for heating him up? For simplicity, ignore any internal temperature differences across my body (that is, assume my skin temperature is also 310 K). Use num- bers to support your answer (for human skin, you can use the following values: surface area A = 1.50 m², emissivity € = 0.970, thickness d = 0.0250 m, thermal conductivty 0.200 ms.K) Jarrow_forwardFruit blossoms are permanently damaged when the temperature drops below about -4 °C, a “hard freeze.” Orchard owners sometimes spray a film of water over the blossoms to protect them when a hard freeze is expected. Give a reason for the protection.arrow_forwardYou have just been to the shops and purchased a 3kg bag of ice (assume all at 0°C) to cool a 24 pack of beverages, in 375 ml containers, which is now at 25°C. If you had a perfectly insulated chilly bin, and everything reached a final temperature of 0°C, how much of the ice would have melted if you only had to cool the liquid contents, ignoring the containers? Assume the latent heat of ice melting is 334 kJ/kg. If you now include the heat capacity of the containers, do you still have enough ice for (a) bottles or (b) cans. Would cans or bottles cool faster? Cp (kJ/(kg.K) Per container (g) Material Liquid 4.2 375 Aluminium 0.9 14 Glass 0.84 210 For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIU S Paragraph Open Sans,s... v 10pt A I ... > > > I!! > !!! >arrow_forward
- ASAParrow_forwardThe heat of hydration of dough, which is 15 kJ/kg, will raise its temperature to undesirable levels unless some cooling mechanism is utilized. A practical way of absorbing the heat of hydration is to use refrigerated water when kneading the dough. If a recipe calls for mixing 2 kg of flour with 1 kg of water, and the temperature of the city water is 15°C, determine the temperature to which the city water must be cooled before mixing in order for the water to absorb the entire heat of hydration when the water temperature rises to 15°C. Take the specific heats of the flour and the water to be 1.76 and 4.18 kJ/kg·°C, respectively.arrow_forwardSea breezes occur along coastlines, and consist of cool air moving toward the shore from the ocean. However, this only occurs during the day, and is a stronger effect when the air temperature on the land is greatest and the air temperature above the water is coldest. At night, the breezes are reversed, moving from the land toward the ocean. Taking into consideration the specific heat capacities of water and sand (which is about the same as that of concrete), explain how sea breezes form during the day and change direction at night.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY