College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 7WUE
A large room in a house holds 975 kg of dry air at 30.0°C. A woman opens a window briefly and a cool breeze brings in an additional 50.0 kg of dry air at 18.0°C. At what temperature will the two air masses come into thermal equilibrium, assuming they form a closed system? (The specific heat of dry air is 1 006 J/kg · °C, although that value will cancel out of the calorimetry equation.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A styrofoam container used as a picnic cooler
contains a block of ice at 0°C.
If 564 g of ice melts in 1 hour, how much
heat energy per second is passing through the
walls of the container? The heat of fusion of
ice is 3.33 x 10° J/kg.
Answer in units of W.
When air is inhaled, it quickly becomes saturated with water vapor as it passes through the moist upper airways. When a person breathes dry air, about 25 mg of water are exhaled with each breath. At 12 breaths/min, what is the rate of energy loss due to evaporation? Express your answer in both watts and Calories per day. At body temperature, the heat of vaporization ofwater is Lv = 24 × 105 J/kg.
A large room in a house holds 975 kg of dry air at 30.0°C. A woman opens a window briefly and a cool breeze brings in an additional 50.0 kg of dry air at 18.0°C. At what temperature will the two air masses come into thermal equilibrium, assuming they form a closed system? (The specific heat of dry air is 1006 J/kg ∙ °C, although that value will cancel out of the calorimetry equation.)
Chapter 11 Solutions
College Physics
Ch. 11.2 - Prob. 11.1QQCh. 11.4 - Prob. 11.2QQCh. 11.5 - Will an ice cube wrapped in a wool blanket remain...Ch. 11.5 - Two rods of the same length and diameter are made...Ch. 11.5 - Stars A and B have the same temperature, but star...Ch. 11 - Prob. 1WUECh. 11 - Physics Review An athlete lifts a 175-kg barbell...Ch. 11 - Prob. 3WUECh. 11 - Convert 3.50 103 cal to the equivalent number of...Ch. 11 - Prob. 5WUE
Ch. 11 - Prob. 6WUECh. 11 - A large room in a house holds 975 kg of dry air at...Ch. 11 - A wooden wall 4.00 cm thick made of pine with...Ch. 11 - A granite ball of radius 2.00 m and emissivity...Ch. 11 - Rub the palm of your hand on a metal surface for...Ch. 11 - In winter, why did the pioneers store an open...Ch. 11 - In warm climates that experience an occasional...Ch. 11 - Prob. 4CQCh. 11 - On a clear, cold night, why does frost tend to...Ch. 11 - The U.S. penny is now made of copper-coated zinc....Ch. 11 - Cups of water for coffee or tea can be warmed with...Ch. 11 - Prob. 8CQCh. 11 - A tile floor may feel uncomfortably cold to your...Ch. 11 - On a very hot day, its possible to cook an egg on...Ch. 11 - Concrete has a higher specific heat than does...Ch. 11 - You need to pick up a very hot cooking pot in your...Ch. 11 - A poker is a stiff, nonflammable rod used to push...Ch. 11 - Star A has twice the radius and twice the absolute...Ch. 11 - Prob. 15CQCh. 11 - The highest recorded waterfall in the world is...Ch. 11 - The temperature of a silver bar rises by 10.0C...Ch. 11 - Lake Erie contains roughly 4.00 1011 m3 of water....Ch. 11 - An aluminum rod is 20.0 cm long at 20.0C and has a...Ch. 11 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 11 - Prob. 6PCh. 11 - A 75-kg sprinter accelerates from rest to a speed...Ch. 11 - A sprinter of mass m accelerates uniformly from...Ch. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - A 1.5-kg copper block is given an initial speed of...Ch. 11 - A certain steel railroad rails 13 yd in length and...Ch. 11 - Prob. 14PCh. 11 - What mass of water at 25.0C must be allowed to...Ch. 11 - Lead pellets, each of mass 1.00 g, are heated to...Ch. 11 - Prob. 17PCh. 11 - In a showdown on the streets of Laredo, the good...Ch. 11 - Prob. 19PCh. 11 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 11 - A student drops two metallic objects into a 120-g...Ch. 11 - When a driver brakes an automobile, the friction...Ch. 11 - Equal 0.400-kg masses of lead and tin at 60.0C are...Ch. 11 - Prob. 24PCh. 11 - A 75-g ice cube al 0C is placed in 825 g of water...Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - A high-end gas stove usually has at least one...Ch. 11 - Prob. 34PCh. 11 - Steam at 100.C is added to ice at 0C. (a) Find the...Ch. 11 - The excess internal energy of metabolism is...Ch. 11 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 11 - A glass windowpane in a home is 0.62 cm thick and...Ch. 11 - A pond with a flat bottom has a surface area of...Ch. 11 - The thermal conductivities of human tissues vary...Ch. 11 - A steam pipe is covered with 1.50-cm-thick...Ch. 11 - The average thermal conductivity of the walls...Ch. 11 - Consider two cooking pots of the same dimensions,...Ch. 11 - A thermopane window consists of two glass panes,...Ch. 11 - A copper rod and an aluminum rod of equal diameter...Ch. 11 - A Styrofoam box has a surface area of 0.80 m and a...Ch. 11 - A rectangular glass window pane on a house has a...Ch. 11 - Prob. 48PCh. 11 - Measurements on two stars indicate that Star X has...Ch. 11 - The filament of a 75-W light bulb is at a...Ch. 11 - The bottom of a copper kettle has a 10.0-cm radius...Ch. 11 - A family comes home from a long vacation with...Ch. 11 - A 0.040.-kg ice cube floats in 0.200 kg of water...Ch. 11 - The surface area of an unclothed person is 1.50...Ch. 11 - A 200-g block of copper at a temperature of 90C is...Ch. 11 - Prob. 56APCh. 11 - A student measures the following data in a...Ch. 11 - Prob. 58APCh. 11 - A class of 10 students; taking an exam has a power...Ch. 11 - A class of 10 students taking an exam has a power...Ch. 11 - A bar of gold (Au) is in thermal contact with a...Ch. 11 - An iron plate is held against an iron, wheel so...Ch. 11 - Prob. 63APCh. 11 - Three liquids are at temperatures of 10C, 20C, and...Ch. 11 - Prob. 65APCh. 11 - A wood stove is used to heat a single room. The...Ch. 11 - Prob. 67APCh. 11 - Prob. 68APCh. 11 - The surface of the Sun has a temperature of about...Ch. 11 - The evaporation of perspiration is the primary...Ch. 11 - Prob. 71APCh. 11 - An ice-cube tray is filled with 75.0 g of water....Ch. 11 - An aluminum rod and an iron rod are joined end to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forwardFor a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardA certain ideal gas has a molar specific heat of Cv = 72R. A 2.00-mol sample of the gas always starts at pressure 1.00 105 Pa and temperature 300 K. For each of the following processes, determine (a) the final pressure, (b) the final volume, (c) the final temperature, (d) the change in internal energy of the gas, (e) the energy added to the gas by heat, and (f) the work done on the gas. (i) The gas is heated at constant pressure to 400 K. (ii) The gas is heated at constant volume to 400 K. (iii) The gas is compressed at constant temperature to 1.20 105 Pa. (iv) The gas is compressed adiabatically to 1.20 105 Pa.arrow_forward
- At 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forwardAn aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardWhen a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forward
- Beryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forwardWhy is the following situation impossible? An ideal gas undergoes a process with the following parameters: Q = 10.0 J, W = 12.0 J, and T = 2.00C.arrow_forward
- Suppose 26.0 g of neon gas are stored in a tank at a temperature of 152C. (a) What is the temperature of the gas on the Kelvin scale? (See Section 10.2.) (b) How many moles of gas are in the tank? (See Section 10.4.) (c) What is the internal energy of the gas? (See Section 10.5.)arrow_forwardWhy is a person able to remove a piece of dry aluminum foil from a hot oven with bare fingers, whereas a burn results if there is moisture on the foil?arrow_forwardTwo concrete spans that form a bridge of length L are placed end to end so that no room is allowed for expansion (Fig. P16.63a). If a temperature increase of T occurs, what is the height y to which the spans rise when they buckle (Fig. P16.63b)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY