Concept explainers
A small aircraft has a wing area of 40 m2, a lift coefficient of 0.4$ at takeoff settings, and a total mass of 4000 kg. Determine (a) the takeoff speed of this aircraft at sea level at standard atmospheric conditions. (b) the wing loading, and (c) the required power to maintain a constant cruising speed of 360 km/h for a cruising drag coefficient of 0.035.
(a)
Take off speed at sea level at standard atmospheric conditions.
Answer to Problem 88P
Explanation of Solution
Given information:
Concept used:
Calculation:
For standard air at sea level, the density is
Conclusion:
The takeoff speed at sea level at standard atmospheric conditions is
(b)
Wing loading of the aircraft.
Answer to Problem 88P
Explanation of Solution
Given information:
Concept used:
Calculation:
Conclusion:
The wing loading of the aircraft is
(c)
Power required by the engine to maintain a given constant cruising speed
Answer to Problem 88P
Explanation of Solution
Given information:
Concept used:
Calculation:
For standard air at sea level, the density is
Conclusion:
The power required by the engine to maintain a constant cruising speed of
Want to see more full solutions like this?
Chapter 11 Solutions
Fluid Mechanics: Fundamentals and Applications
- A 17,000-kg tractor-trailer rig has a frontal area of 9.2 m2, a drag coefficient of 0.96, a rolling resistance coefficient of 0.05 (multiplying the weight of a vehicle by the rolling resistance coefficient gives the rolling resistance), a bearing friction resistance of 350 N, and a maximum speed of 110 km/h on a level road during steady cruising in calm weather with an air density of 1.25 kg/m3. Now a fairing is installed to the front of the rig to suppress separation and to streamline the flow to the top surface, and the drag coefficient is reduced to 0.76. Determine the maximum speed of the rig with the fairing.arrow_forwardA commercial airplane has a total mass of 70,000 kg and a wing planform area of 150 m2. The plane has a cruising speed of 558 km/h and a cruising altitude of 12,000 m, where the air density is 0.312 kg/m3. The plane has double-slotted flaps for use during takeoff and landing, but it cruises with all flaps retracted. Assuming the lift and the drag characteristics of the wings can be approximated by NACA 23012 , determine (a) the minimum safe speed for takeoff and landing with and without extending the flaps, (b) the angle of attack to cruise steadily at the cruising altitude, and (c) the power that needs to be supplied to provide enough thrust to overcome wing drag.arrow_forwardPlease find attached questions. Thank you.arrow_forward
- The drag coefficient of a vehicle increases when its windows are rolled down or its sunroof is opened. A sports car has a frontal area of 18 ft2 and a drag coefficient of 0.32 when the windows and sunroof are closed. The drag coefficient increases to 0.41 when the sunroof is open. Take the density of air to be 0.075 lbm/ft3. Determine the additional power consumption of the car when the sunroof is opened at (a) 32 mi/h and (b) 70 mi/h.arrow_forwardAn airplane has a total mass of 35,000 kg and a wing planform area of 65 m2. The airplane is cruising at 10,000 m altitude with a velocity of 1100 km/h. The density of air on cruising altitude is 0.414 kg/m3. The lift coefficient of this airplane at the cruising altitude is (a) 0.273 (b) 0.290 (c) 0.456 (d ) 0.874 (e) 1.22arrow_forwardA commercial airplane has a total mass of 150,000 lbm and a wing planform area of 1700 ft2. The plane has a cruising speed of 625 mi/h and a cruising altitude of 38,000 ft where the air density is 0.0208 lbm/ft3. The plane has double-slotted flaps for use during takeoff and landing, but it cruises with all flaps retracted. Assuming the lift and drag characteristics of the wings can be approximated by NACA 23012, determine (a) the minimum safe speed for takeoff and landing with and without extending the flaps, (b) the angle of attack to cruise steadily at the cruising altitude, and (c) the power that needs to be supplied to provide enough thrust to overcome drag. Take the air density on the ground to be 0.075 lbm/ft3.arrow_forward
- and power for part barrow_forwardA 0.25 kg kite with an area of 0.65 mitres squared flies in a 25 km/h wind such that the weightless string makes an angle of 40° relative to the horizontal.The density of air is 1.22 kg/m^3.if the pull on string is 7 N.determine the lift and drag coefficient basee on the kite areaarrow_forwardThe form drag coefficient of a certain light aircraft is equal to 0.011. Its skin friction drag coefficient is 0.016. Determine its lift-to-drag ratio (nearest hundredths) while flying at the speed for minimum power required if its interference drag is 7 percent of its profile drag. The aircraft has rectangular wing with an aspect ratio of 7.01. Assume a a span efficiency factor of 0.91.arrow_forward
- Bill gets a job delivering pizzas. The pizza company makes him mount a sign on the roof of his car. The frontal area of the sign is A = 0.612 ft2, and he estimates the drag coefficient to be CD = 0.94 at nearly all air speeds. Estimate how much additional money it costs Bill per year in fuel to drive with the sign on his roof compared to without the sign. Use the following additional information: He drives about 10,000 miles per year at an average speed of 45 mph. The overall car efficiency is 0.332, ? fuel = 50.2 lbm/ft3, and the heating value of the fuel is 1.53 × 107 ft . lbf/lbm. The fuel costs $3.50 per gallon. Use standard air properties. Be careful with unit conversions.arrow_forwardThe sphere of diameter of 5.0 cm is moving in still water at a velocity of 2.0 m/s. The drag coefficient is 0.44. Determine the hydrodynamic drag acting on the sphere if the density of water is 997 kg/m^3*arrow_forwardDefine the planform area of a body subjected to external flow. When is it appropriate to use the planform area in drag and lift calculations?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY