(a)
Interpretation:
Freezing point and boiling point of the solutions to be calculated.
5g
Concept introduction:
Freezing point: Freezing point is defined as the temperature at which liquid into solid.
Boiling point: Boiling point is temperature at which the liquid into gas.
Elevation of boiling point: Elevation of boiling point of a liquid is occurrence that boiling point of a liquid would be greater when another substance is added to it. Resulting, the boiling point becomes higher than the pure solvent.
Depression of freezing point: Depression of freezing point is reducing in freezing point of a solvent when added non volatile solute. Volatile substance means easily vaporized at room temperature and non volatile means does not easily evaporate at room temperature.
(b)
Interpretation:
Freezing point and boiling point of the solutions to be calculated.
2.0g
Concept introduction:
Freezing point: Freezing point is defined as the temperature at which liquid into solid.
Boiling point: Boiling point is temperature at which the liquid into gas.
Elevation of boiling point: Elevation of boiling point of a liquid is occurrence that boiling point of a liquid would be greater when another substance is added to it. Resulting, the boiling point becomes higher than the pure solvent.
Depression of freezing point: Depression of freezing point is reducing in freezing point of a solvent when added non volatile solute. Volatile substance means easily vaporized at room temperature and non volatile means does not easily evaporate at room temperature.
Trending nowThis is a popular solution!
Chapter 11 Solutions
Chemistry
- a. Use the following data to calculate the enthalpy of hydration for calcium chloride and calcium iodide. Lattice Energy Hsoln CaCl2(s) 2247kj/mol 46kj/mol Cal2(s) 2059kj/mol 104kj/mol b. Based on your answers to part a, which ion, Cl or I, is more strongly attracted to water?arrow_forwardThe solubility of NaCl in water at 100 C is 39.1 g/100. g of water Calculate the boiling point of this solution. (Assume i = 1.85 for NaCl.)arrow_forwardCalculate the molality of a solution made by dissolving 115.0 g ethylene glycol, HOCH2CH2OH, in 500. mL water. The density of water at this temperature is 0.978 g/mL. Calculate the molarity of the solution.arrow_forward
- Consider the following aqueous solutions: (i) 0.20 m HOCH2CH2OH (nonvolatile, nonelectrolyte); (ii) 0.10 m CaCl2 (iii) 0.12 m KBr; and (iv) 0.12 m Na2SO4. (a) Which solution has the highest boiling point? (b) Which solution has the lowest freezing point? (c) Which solution has the highest water vapor pressure?arrow_forwardSodium chloride (NaCl) is commonly used to melt ice on roads during the winter. Calcium chloride (CaCl2) is sometimes used for this purpose too. Let us compare the effectiveness of equal masses of these two compounds in lowering the freezing point of water, by calculating the freezing point depression of solutions containing 200. g of each salt in 1.00 kg of water. (An advantage of CaCl2 is that it acts more quickly because it is hygroscopic, that is. it absorbs moisture from the air to give a solution and begin the process. A disadvantage is that this compound is more costly.)arrow_forwardConsider two hypothetical pure substances, AB(s) and XY(s). When equal molar amounts of these substances are placed in separate 500-mL samples of water, they undergo the following reactions: AB(s)A+(aq)+B(aq)XY(s)XY(aq) a Which solution would you expect to have the lower boiling point? Why? b Would you expect the vapor pressures of the two solutions to be equal? If not, which one would you expect to have the higher vapor pressure? c Describe a procedure that would make the two solutions have the same boiling point. d If you took 250 mL of the AB(aq) solution prepared above, would it have the same boiling point as the original solution? Be sure to explain your answer. e The container of XY(aq) is left out on the bench top for several days, which allows some of the water to evaporate from the solution. How would the melting point of this solution compare to the melting point of the original solution?arrow_forward
- Samples of each of the substances listed below are dissolved in 125 g of water. Which of the solutions has the highest boiling point? (a) 3.0 g sucrose, C12H22O11 (b) 1.0 g glycerol, C3H3(OH)3 (c) 1.0 g propylene glycol, C3H6(OH)2 (d) 2.0 g glucose, C6H12(OH)2arrow_forwardWater at 25 C has a density of 0.997 g/cm3. Calculate the molality and molarity of pure water at this temperature.arrow_forwardConcentrated hydrochloric acid contains 1.00 mol HCl dissolved in 3.31 mol H2O. What is the mole fraction of HCl in concentrated hydrochloric acid? What is the molal concentration of HCl?arrow_forward
- Consider three test tubes. Tube A has pure water. Tube B has an aqueous 1.0 m solution of ethanol, C2H5OH. Tube C has an aqueous 1.0 m solution of NaCl. Which of the following statements are true? (Assume that for these solutions 1.0m=1.0M.) (a) The vapor pressure of the solvent over tube A is greater than the solvent pressure over tube B. (b) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube A. (c) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube C. (d) The boiling point of the solution in tube B is higher than the boiling point of the solution in tube C. (e) The osmotic pressure of the solution in tube B is greater than the osmotic pressure of the solution in tube C.arrow_forwardInstead of using NaCl to melt the ice on your sidewalk you decide to use CaCl2. If you add 35.0 g of CaCl2 to 150. g of water, what is the freezing point of the solution? (Assume i = 2.7 for CaCl2.)arrow_forwardThe freezing point of a 0.21 m aqueous solution of H2SO4 is -0.796C. (a) What is i? (b) Is the solution made up primarily of (i) H2SO4 molecules only? (ii) H+ and HSO4- ions? (iii) 2H+ and 1SO42- ions?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning