The trisodium phosphate ( Na 3 PO 4 ) ideality should be identified. Concept Introduction : Solution : The solution is simple homogenies mixture composed of two or more substance; solute is a substance dissolved in another substance it well known as solvent. Ideal solutions : The solution in which interactions between molecules of the components does not differ from the interactions between the molecules of each component. For example the ideal solutions that conforms exactly to Raoult’s law it compare to the activity and activity co-efficient. Non Ideal gas : The solutions whose properties are generally not very predictable of account of the intermolecular forces between the molecules. This solution cannot be dealt with through Raoult’s law; this law is strictly for ideal solutions only. Raoult’s law : This state that the partial vapor pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component multiplied by its mole fractions in the mixture. The negative deviations from Raoult’s law arise when forces between the partials in the mixture are stronger than the mean of the force between the partials in the pure liquids.
The trisodium phosphate ( Na 3 PO 4 ) ideality should be identified. Concept Introduction : Solution : The solution is simple homogenies mixture composed of two or more substance; solute is a substance dissolved in another substance it well known as solvent. Ideal solutions : The solution in which interactions between molecules of the components does not differ from the interactions between the molecules of each component. For example the ideal solutions that conforms exactly to Raoult’s law it compare to the activity and activity co-efficient. Non Ideal gas : The solutions whose properties are generally not very predictable of account of the intermolecular forces between the molecules. This solution cannot be dealt with through Raoult’s law; this law is strictly for ideal solutions only. Raoult’s law : This state that the partial vapor pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component multiplied by its mole fractions in the mixture. The negative deviations from Raoult’s law arise when forces between the partials in the mixture are stronger than the mean of the force between the partials in the pure liquids.
Solution Summary: The author explains that the trisodium phosphate ideality should be identified.
The trisodium phosphate (
Na3PO4) ideality should be identified.
Concept Introduction:
Solution: The solution is simple homogenies mixture composed of two or more substance; solute is a substance dissolved in another substance it well known as solvent.
Ideal solutions: The solution in which interactions between molecules of the components does not differ from the interactions between the molecules of each component. For example the ideal solutions that conforms exactly to Raoult’s law it compare to the activity and activity co-efficient.
Non Ideal gas: The solutions whose properties are generally not very predictable of account of the intermolecular forces between the molecules. This solution cannot be dealt with through Raoult’s law; this law is strictly for ideal solutions only.
Raoult’s law: This state that the partial vapor pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component multiplied by its mole fractions in the mixture. The negative deviations from Raoult’s law arise when forces between the partials in the mixture are stronger than the mean of the force between the partials in the pure liquids.
3. Consider the compounds below and determine if they are aromatic, antiaromatic, or
non-aromatic. In case of aromatic or anti-aromatic, please indicate number of I
electrons in the respective systems. (Hint: 1. Not all lone pair electrons were explicitly
drawn and you should be able to tell that the bonding electrons and lone pair electrons
should reside in which hybridized atomic orbital 2. You should consider ring strain-
flexibility and steric repulsion that facilitates adoption of aromaticity or avoidance of anti-
aromaticity)
H H
N
N:
NH2
N
Aromaticity
(Circle)
Aromatic Aromatic Aromatic Aromatic Aromatic
Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic
nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic
aromatic TT
electrons
Me
H
Me
Aromaticity
(Circle)
Aromatic Aromatic Aromatic
Aromatic Aromatic
Antiaromatic Antiaromatic Antiaromatic Antiaromatic Antiaromatic
nonaromatic nonaromatic nonaromatic nonaromatic nonaromatic
aromatic πT
electrons
H
HH…
A chemistry graduate student is studying the rate of this reaction:
2 HI (g) →H2(g) +12(g)
She fills a reaction vessel with HI and measures its concentration as the reaction proceeds:
time
(minutes)
[IH]
0
0.800M
1.0
0.301 M
2.0
0.185 M
3.0
0.134M
4.0
0.105 M
Use this data to answer the following questions.
Write the rate law for this reaction.
rate
= 0
Calculate the value of the rate constant k.
k =
Round your answer to 2 significant digits. Also be
sure your answer has the correct unit symbol.