Figure 11.22 shows a demonstration gyroscope, consisting of a solid disk mounted on a shaft. The disk spins about the shaft on essentially frictionless bearings. The shaft is mounted on a stand so it’s free to pivot both horizontally and vertically. A weight at the far end of the shaft balances the disk, so in the configuration shown there’s no torque on the system. An arrowhead mounted on the disk end of the shaft indicates the direction of the disk’s
FIGURE 11.22 A gyroscope (Passage Problems 65–68)
If you push on the shaft between the arrowhead and the disk, pushing directly upward on the bottom of the shaft, the arrow-head end of the shaft will move
- a. away from you (i.e., into the page).
- b. toward you (i.e., out of the page).
- c. downward.
- d. upward.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Biology (11th Edition)
Anatomy & Physiology (6th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Biology: Life on Earth with Physiology (11th Edition)
- A disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardA turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardAn electric motor turns a flywheel through a drive belt that joins a pulley on the motor and a pulley that is rigidly attached to the flywheel as shown in Figure P10.37. The flywheel is a solid disk with a mass of 80.0 kg and a radius R = 0.625 m. It turns on a frictionless axle. Its pulley has much smaller mass and a radius of r = 0.230 m. The tension Tu in the upper (taut) segment of the belt is 135 N, and the flywheel has a clockwise angular acceleration of 1.67 rad/s2. Find the tension in the lower (slack) segment of the belt. Figure P10.37arrow_forward
- A rod 7.0 m long is pivoted at a point 2.0 m from the left end. A downward force of 50 N acts at the left end, and a downward force of 200 N acts at the right end. At what distance to the right of the pivot can a third force of 300 N acting upward be placed to produce rotational equilibrium? Note: Neglect the weight of the rod. (a) 1.0 m (b) 2.0 m (c) 3.0 m (d) 4.0 m (e) 3.5 marrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardThe reel shown in Figure P10.71 has radius R and moment of inertia I. One end of the block of mass m is connected to a spring of force constant k, and the other end is fastened to a cord wrapped around the reel. The reel axle and the incline are frictionless. The reel is wound counterclockwise so that the spring stretches a distance d from its unstretched position and the reel is then released from rest. Find the angular speed of the reel when the spring is again unstretched. Figure P10.71arrow_forward
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through one of its ends. Find the magnitude of the rodsangular momentum.arrow_forwardA war-wolf, or trebuchet, is a device used during the Middle Ages to throw rocks at castles and now sometimes used to fling large vegetables and pianos as a sport. A simple trebuchet is shown in Figure P10.19. Model it as a stiff rod of negligible mass, 3.00 m long, joining particles of mass m1 = 0.120 kg and m2 = 60.0 kg at its ends. It can turn on a frictionless, horizontal axle perpendicular to the rod and 14.0 cm from the large-mass particle. The operator releases the trebuchet from rest in a horizontal orientation. (a) Find the maximum speed that the small-mass object attains. (b) While the small-mass object is gaining speed, does it move with constant acceleration? (c) Does it move with constant tangential acceleration? (d) Does the trebuchet move with constant angular acceleration? (e) Does it have constant momentum? (f) Does the trebuchetEarth system have constant mechanical energy?arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forward
- A playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forwardRigid rods of negligible mass lying along the y axis connect three particles (Fig. P10.18). The system rotates about the x axis with an angular speed of 2.00 rad/s. Find (a) the moment of inertia about the x axis, (b) the total rotational kinetic energy evaluated from 12I2, (c) the tangential speed of each particle, and (d) the total kinetic energy evaluated from 12mivi2. (e) Compare the answers for kinetic energy in parts (b) and (d). Figure P10.18arrow_forwardConsider two objects with m1 m2 connected by a light string that passes over a pulley having a moment of inertia of I about its axis of rotation as shown in Figure P10.44. The string does not slip on the pulley or stretch. The pulley turns without friction. The two objects are released from rest separated by a vertical distance 2h. (a) Use the principle of conservation of energy to find the translational speeds of the objects as they pass each other. (b) Find the angular speed of the pulley at this time.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning