A physics student is standing on an initially motionless, frictionless turntable with rotational inertia 0.31 kg · m 2 . She’s holding a wheel with rotational inertia 0.22 kg · m 2 spinning at 130 rpm about a vertical axis, as in Fig. 11.8. When she turns the wheel upside down, student and turntable begin rotating at 70 rpm. (a) Find the student’s mass, considering her to be a 30-cm-diameter cylinder. (b) Neglecting the distance between the axes of the turntable and wheel, determine the work she did in turning the wheel upside down.
A physics student is standing on an initially motionless, frictionless turntable with rotational inertia 0.31 kg · m 2 . She’s holding a wheel with rotational inertia 0.22 kg · m 2 spinning at 130 rpm about a vertical axis, as in Fig. 11.8. When she turns the wheel upside down, student and turntable begin rotating at 70 rpm. (a) Find the student’s mass, considering her to be a 30-cm-diameter cylinder. (b) Neglecting the distance between the axes of the turntable and wheel, determine the work she did in turning the wheel upside down.
A physics student is standing on an initially motionless, frictionless turntable with rotational inertia 0.31 kg · m2. She’s holding a wheel with rotational inertia 0.22 kg · m2 spinning at 130 rpm about a vertical axis, as in Fig. 11.8. When she turns the wheel upside down, student and turntable begin rotating at 70 rpm. (a) Find the student’s mass, considering her to be a 30-cm-diameter cylinder. (b) Neglecting the distance between the axes of the turntable and wheel, determine the work she did in turning the wheel upside down.
A cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?
Two-point charges of 5.00 µC and -3.00 µC are placed 0.250 m apart.a) What is the electric force on each charge? Include strength and direction and a sketch.b) What would be the magnitude of the force if both charges are positive? How about the direction?
c) What will happen to the electric force on each piece of charge if they are moved twice as far apart? (Give a numerical answer as well as an explanation.)
Chapter 11 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.