Jumbo is back! Jumbo is the 4.8-Mg elephant from Example 9.4. This time he’s standing at the outer edge of a 15-Mg turntable of radius 8.5 m, rotating with angular velocity 0.15 s −1 on frictionless bearings. Jumbo then walks to the center of the turntable. Treating Jumbo as a point mass and the turntable as a solid disk, find (a) the angular velocity of the turntable once Jumbo reaches the center and (b) the work Jumbo does in walking to the center.
Jumbo is back! Jumbo is the 4.8-Mg elephant from Example 9.4. This time he’s standing at the outer edge of a 15-Mg turntable of radius 8.5 m, rotating with angular velocity 0.15 s −1 on frictionless bearings. Jumbo then walks to the center of the turntable. Treating Jumbo as a point mass and the turntable as a solid disk, find (a) the angular velocity of the turntable once Jumbo reaches the center and (b) the work Jumbo does in walking to the center.
Jumbo is back! Jumbo is the 4.8-Mg elephant from Example 9.4. This time he’s standing at the outer edge of a 15-Mg turntable of radius 8.5 m, rotating with angular velocity 0.15 s−1 on frictionless bearings. Jumbo then walks to the center of the turntable. Treating Jumbo as a point mass and the turntable as a solid disk, find (a) the angular velocity of the turntable once Jumbo reaches the center and (b) the work Jumbo does in walking to the center.
Definition Definition Rate of change of angular displacement. Angular velocity indicates how fast an object is rotating. It is a vector quantity and has both magnitude and direction. The magnitude of angular velocity is represented by the length of the vector and the direction of angular velocity is represented by the right-hand thumb rule. It is generally represented by ω.
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.