Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 65P
SSM WWW Two 2.00 kg balls are attached to the ends of a thin rod of length 50.0 cm and negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center. With the rod initially horizontal (Fig. 11-57), a 50.0 g wad of wet putty drops onto one of the balls, hitting it with a speed of 3.00 m/s and then sticking to it. (a) What is the angular speed of the system just after the putty wad hits? (b) What is the ratio of the kinetic energy of the system after the collision to that of the putty wad just before? (c) Through what angle will the system rotate before it momentarily stops?
Figure 11-57 Problem 65.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The oxygen molecule has a mass of 5.30 × 10'
-26 kg
and a moment of inertia of 1.94 × 10-46 kg m?
about an axis through its centre perpendicular to
the lines joining the two atoms. Suppose the mean
speed of such a molecule in a gas is 500 m/s and
that its kinetic energy of rotation is two-thirds of its
kinetic energy of translation. Find the average angular
velocity of the molecule.
76. Round and Round Little Jay is
enjoying his first ride on a merry-go-
round. (He is riding a stationary
horse rather than one that goes up
Av at 4 = 0
%3D
and down.) A schematic view of the
merry-go-round as seen from above
is shown in Fig. 11-47a with a conve-
nient coordinate system. A bit after
the merry-go-round has started and
is going around uniformly, we start
our clock. Little Jay's position and
velocity at time t
dot and arrow. At t = 0 is the net force acting on Jay equal to zero?
If it is, write "Yes" and give a reason why you think so. If it isn't,
write “No" and specify the type of force and the object responsible
for exerting it.
FIGURE 11-47a
Problem 76.
0 are shown as a
%3D
%3D
For the next six parts, specify which of the graphs shown in
Fig. 11-47b could represent the indicated variable for Jay's motion.
If none of the graphs work, write "N."
(A
(B)
0.
-Time
Time
0.
(D)
0.
Time 0
Time
E
F
Time
Time
FIGURE 11-47b Problem 76.
(a) The x-component of Jay's velocity
(b)…
The cylindrical plug A of mass mA = 2.7 kg is released from rest at B and slides down the smooth circular guide. The plug strikes the
block C of mass mc = 2.1 kg and becomes embedded in it. Calculate the distances which the block and plug slide before coming to rest.
The coefficient of kinetic friction between the block and the horizontal surface is uk = 0.38 and the distance r = 2.08 m.
Hk
Answer: s=
i
mc
A
MA
B
m
Chapter 11 Solutions
Fundamentals of Physics Extended
Ch. 11 - Figure 11-23 shows three particles of the same...Ch. 11 - Figure 11-24 shows two particles A and B at xyz...Ch. 11 - What happens to the initially stationary yo-yo in...Ch. 11 - The position vector r of a particle relative to a...Ch. 11 - In Fig. 11-26, three forces of the same magnitude...Ch. 11 - The angular momenta t of a particle in four...Ch. 11 - A rhinoceros beetle rides the rim of a horizontal...Ch. 11 - Figure 11-27 shows an overhead view of a...Ch. 11 - Figure 11-38 gives the angular momentum magnitude...Ch. 11 - Figure 11-29 shows a particle moving at constant...
Ch. 11 - A cannonball and a marble roll smoothly from rest...Ch. 11 - Prob. 12QCh. 11 - A car travels at 80 km/h on a level road in the...Ch. 11 - An automobile traveling at 80.0 km/h has tires of...Ch. 11 - Prob. 3PCh. 11 - A uniform solid sphere rolls down an incline. a...Ch. 11 - ILW A 1000 kg car has four 10 kg wheels. When the...Ch. 11 - Figure 11-30 gives the speed v versus time t for a...Ch. 11 - ILW In Fig. 11-31, a solid cylinder of radius 10cm...Ch. 11 - Figure 11-32 shows the potential energy Ux of a...Ch. 11 - GO In Fig. 11-33, a solid ball rolls smoothly from...Ch. 11 - A hollow sphere of radius 0.15 m, with rotational...Ch. 11 - In Fig. 11-34, a constant horizontal force Fapp of...Ch. 11 - GO In Fig. 11-35, a solid brass ball of mass 0.280...Ch. 11 - GO Nonuniform ball. In Fig. 11-36, a ball of mass...Ch. 11 - In Fig. 11-37, a small, solid, uniform ball is to...Ch. 11 - GO A bowler throws a bowling ball of radius R = 11...Ch. 11 - GO Nonuniform cylindrical object. In Fig. 11-39, a...Ch. 11 - SSM A yo-yo has a rotational inertia of 950 gcm2...Ch. 11 - Prob. 18PCh. 11 - In unit-vector notation, what is the net torque...Ch. 11 - A plum is located at coordinates 2.0 m, 0, 4.0 m....Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - A particle moves through an xyz coordinate system...Ch. 11 - Force F=(2.0N)i(3.0N)k acts on a pebble with...Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - SSM Force F=(8.0N)i+(6.0N)j acts on a particle...Ch. 11 - At the instant of Fig. 11-40, a 2.0 kg particle P...Ch. 11 - SSM At one instant, force F=4.0N acts on a 0.25 kg...Ch. 11 - A 2.0 kg particle-like object moves in a plant...Ch. 11 - ILW In the instant of Fig, 11-41, two particles...Ch. 11 - At the instant the displacement of a 2.00 kg...Ch. 11 - In Fig. 11-42, a 0.400 kg ball is shot directly...Ch. 11 - A particle is acted on by two torques about the...Ch. 11 - SSM WWW ILW At time t = 0, a 3.0 kg particle with...Ch. 11 - A particle is to move in an xy plane, clockwise...Ch. 11 - At time t, the vector r=4.0t2i(2.0t+6.0t2)j gives...Ch. 11 - Prob. 36PCh. 11 - GO In Fig. 11-44, three particles of mass m = 23 g...Ch. 11 - A sanding disk with rotational inertia 1.2 103...Ch. 11 - SSM The angular momentum of a flywheel having a...Ch. 11 - A disk with a rotational inertia of 7.00 kgm2...Ch. 11 - GO Figure 11-45 shows a rigid structure consisting...Ch. 11 - Figure 11-46 gives the torque that acts on an...Ch. 11 - Prob. 43PCh. 11 - A Texas cockroach of mass 0.17 kg runs...Ch. 11 - SSM WWW A man stands on a platform that is...Ch. 11 - The rotational inertia of a collapsing spinning...Ch. 11 - SSM A track is mounted on a large wheel that is...Ch. 11 - A Texas cockroach walks from the center of a...Ch. 11 - Two disks are mounted like a merry-go-round on...Ch. 11 - The rotor of an electric motor has rotational...Ch. 11 - SSM ILW A wheel is rotating freely at angular...Ch. 11 - GO A cockroach of mass m lies on the rim of a...Ch. 11 - GO In Fig. 11-50 an overhead view, a uniform thin...Ch. 11 - GO Figure 11-51 shows an overhead view of a ring...Ch. 11 - A horizontal vinyl record of mass 0.10 kg and...Ch. 11 - In a long jump, an athlete leaves the ground with...Ch. 11 - A uniform disk of mass 10m and radius 3.0r can...Ch. 11 - A horizontal platform in the shape of a circular...Ch. 11 - Figure 11-52 is an overhead view of a thin uniform...Ch. 11 - In Fig. 11-53, a 1.0 g bullet is tired into a 0.50...Ch. 11 - The uniform rod length 0.60 m, mass 1.0 kg in Fig....Ch. 11 - GO During a jump to his partner, an aerialist is...Ch. 11 - GO In Fig. 11-56, a 30 kg child stands on the edge...Ch. 11 - A ballerina begins a tour jet Fig. 11-19a with...Ch. 11 - SSM WWW Two 2.00 kg balls are attached to the ends...Ch. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - A certain gyroscope consists of a uniform disk...Ch. 11 - A uniform solid ball rolls smoothly along a floor,...Ch. 11 - SSM In Fig. 11-60, a constant horizontal force...Ch. 11 - A thin-walled pipe rolls along the floor. What is...Ch. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - A uniform block of granite in the shape of a book...Ch. 11 - SSM Two particles, each of mass 2.90 104 kg and...Ch. 11 - A wheel of radius 0.250 m, moving initially al...Ch. 11 - Wheels A and B in Fig. 11-61 are connected by a...Ch. 11 - Prob. 80PCh. 11 - SSM A uniform wheel of mass 10.0 kg and radius...Ch. 11 - A uniform rod rotates in a horizontal plane about...Ch. 11 - A solid sphere of weight 36.0 N rolls up an...Ch. 11 - Suppose that the yo-yo in Problem 17, instead of...Ch. 11 - A girl of mass M stands on the rim of a...Ch. 11 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 17-89. The "Catherine wheel" is a firework that consists of a coiled tube of powder which is pinned at its center. If the powder burns at a constant rate of 20 g/s such as that the exhaust gases always exert a force having a constant magnitude of 0.3 N, directed tangent to the wheel, determine the angular velocity of the wheel when 75% of the mass is burned off. Initially, the wheel is at rest and has a mass of 100 g and a radius of r=75 mm. For the calculation, consider the wheel to always be a thin disk. Co 0.3 Narrow_forwardA summer intern uses a cylindrical projectile launcher to throw rubber spheres horizontally at a nearby vertical target. Using a radar gun, she establishes that a sphere with a mass of 0.120 kg and diameter of 8.00 cm has its speed reduced by 10% due to air resistance when the initial speed is of 49.0 m/s as it travels from the launch site to the target a distance of 16.0 m away. Due to the air resistance, a change in temperature occurs initially only for the air in a cylinder equal to the volume of air swept out by the sphere. Determine the maximum possible temperature change (in °C) for this air when the temperature of the air is 20.0°C. To find the greatest possible temperature change, you may make the following assumptions: air has a molar specific heat of c- (R, an equivalent molar mass of 28.9 g/mol, and a density of 1.20 kg/m. 98.5 When finding the change in internal energy of the air, how can you find the number of moles of air? Don't forget, the mass of air to be heated may be…arrow_forwardA wedge of mass 2m placed on a rough surface, its part AB is circular of radius R. A small block of mass m is released from rest at A. Find minimum value of friction between wedge and ground so that wedge remains at rest. smooth R 2m rough (A) 3mg mg (B) 5mg (C) 2. 3mg (D)arrow_forward
- A thin cylindrical shell of M = 4.00 kg and radius R = 2.50 m is rollingdown an inclide. If it is released from rest at the top of the incline of h=9.00m, what is the speed of the center of mass of the cylindrical shell at the bottom of the incline? (?ℎ? ?????? ?? ??????? ?? ? ??????????? ?ℎ???: ? = ??^2)arrow_forwardn41 G0 In Fig. 10-37, two particles, each with mass m = 0.85 kg, are fas- tened to each other, and to a rotation axis at 0, by two thin rods, each with length d = 5.6 cm and mass M = 1.2 kg. The combination rotates M. Rotation axis around the rotation axis with the an- gular speed w = 0.30 rad/s. Measured about O, what are the combination's (a) rotational inertia and (b) kinetic energy? Figure 10-37 Problem 41.arrow_forwardA mountain biker tries to start pedalling in the mud. The total mass (80 kg, bike + biker) is distributed equally between the front and rear wheels. There is a loss of 10% of moment of force between pedal and the rear wheel. The diameter of wheels is 70 cm, and the static friction coefficient between tyre and the mud is 0.3. The pedal angle is 25° from the vertical and has a length of 20 cm. The force exerted by the cyclist is vertical. What is the maximal force that the biker can produce without skidding?Hint 1: ImageHint 2: the value of Mp, the moment around the pedals, is about 50 Nm.arrow_forward
- The Cavendish balance shown in the figure below has two large lead balls, each of mass M = 1.5 kg,and two smaller lead balls, each of mass m = 0.8 kg. The lengths of the suspended rod to which the twosmaller balls are attached and the fixed rod to which the larger balls are attached are both 40 cm asmeasured from the center of each lead ball. If the angle between the centers of the large and smallballs is = 22 degrees with respect to the rotational axis established by the quartz fiber, find the force ofgravitational attraction between each pair of large and small balls.arrow_forwardThe following forces are acting on a particle: 500 N due east; 300 N 30 E of S: Z Newton N 60° W and X Newton 40° S of W. If the particle is in equilibrium, solve for Z and X.arrow_forwarda 15 kg block is held in place via a pulley system. The person’s upper arm is vertical; the forearm is at angle u = 30° with the horizontal. Forearm and hand together have a mass of 2.0 kg, with a center of mass at distance d1 = 15 cm from the contact point of the forearm bone and the upper-arm bone (humerus). The triceps muscle pulls vertically upward on the forearm at distance d2 = 2.5 cm behind that contact point. Distance d3 is 35 cm.What are the (a) magnitude and (b) direction (up or down) of the force on the forearm from the triceps muscle and the (c) magnitude and (d) direction (up or down) of the force on the forearm from the humerus?arrow_forward
- In a playground, there is a small merry-go-round of radius 1.20 m and mass 180 kg. Its radius of gyration (see Problem 79 of Chapter 10) is 91.0 cm.A child of mass 44.0 kg runs at a speed of 3.00 m/s along a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate (a) the rotational inertia of the merry-go-round about its axis of rotation, (b) the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round, and (c) the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round.arrow_forwardA glass bead of diameter 1.70 mm and density 2.89 g/cm3 spins uniformly at a rate of 37 rad/s along a vertical nylon thread that cuts through an axis running through its center. Assuming the bead to be a regular solid sphere (Icom = (2/5)MR2) and neglecting the hole in the middle where the thread goes, report the kinetic energy of the bead in joules. 7.63 x 10-10 J 9.54 x 10-15 J O 3.05 x 10-9 J O 9.54 x 10-11 Jarrow_forward•66 GO In Fig. 11-58, a small 50 g block slides down a frictionless sur- face through height h = 20 cm and then sticks to a uniform rod of mass Ө 100 g and length 40 cm. The rod pivots about point 0 t hrough angle 0 before momentarily stopping. Find 0. 67 GO Figure 11-59 is an over- head view of a thin uniform rod of length 0.600 m and mass M rotating Figure 11-58 Problem 66.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License