Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 11, Problem 63P
GO In Fig. 11-56, a 30 kg child stands on the edge of a stationary merry-go-round of radius 2.0 m. The rotational inertia of the merry- go-round about its rotation axis is 150kg·m2.The child catches a ball of mass 1.0 kg thrown by a friend. Just before the ball is caught, it has a horizontal velocity
Figure 111-56 Problem 63.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A small object with mass 4.00 kg moves counterclockwise with constant angular speed 1.50 rad/s in a circle of radius 3.00 m centered at the origin. It starts at the point with position vector 3.00î m. It then undergoes an angular displacement of 9.00 rad. (a) What is its new position vector? Use unit-vector notation for all vector answers. (b) In what quadrant is the particle located, and what angle does its position vector make with the positive x axis? (c) What is its velocity? (d) In what direction is it moving? (e) What is its acceleration? (f) Make a sketch of its position, velocity, and acceleration vectors. (g) What total force is exerted on the object?
A small object with mass 4.45 kg moves counterclockwise with constant speed 1.60 rad/s in a circle of radius 2.75 m centered at the origin. It starts at the point with position vector 2.75î m. Then it undergoes an angular displacement of 9.10 rad.
(a) What is its new position vector?
m
(b) In what guadrant is the object located and what angle does its position vector make with the positive x-axis?
--Select--- v at
(c) What is its velocity?
m/s
(d) In what direction is it moving?
o from the +x direction.
(e) What is its acceleration?
m/s2
(f) Make a sketch of its position, velocity, and acceleration vectors. Choose File No file chosen
(g) What total force is exerted on the object?
N
A small object with mass 3.80 kg moves counterclockwise with constant speed 1.70 rad/s in a circle of radius 3.35 m centered at the origin. It starts at the point with position
vector 3.35î m. Then it undergoes an angular displacement of 9.25 rad.
(a) What is its new position vector?
m
(b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis?
---Select--- v at
(c) What is its velocity?
m/s
(d) In what direction is it moving?
° from the +x direction.
(e) What is its acceleration?
m/s2
(f) Make a sketch of its position, velocity, and acceleration vectors. Choose file No file chosen
This answer has not been graded yet.
(g) What total force is exerted on the object?
N
Chapter 11 Solutions
Fundamentals of Physics Extended
Ch. 11 - Figure 11-23 shows three particles of the same...Ch. 11 - Figure 11-24 shows two particles A and B at xyz...Ch. 11 - What happens to the initially stationary yo-yo in...Ch. 11 - The position vector r of a particle relative to a...Ch. 11 - In Fig. 11-26, three forces of the same magnitude...Ch. 11 - The angular momenta t of a particle in four...Ch. 11 - A rhinoceros beetle rides the rim of a horizontal...Ch. 11 - Figure 11-27 shows an overhead view of a...Ch. 11 - Figure 11-38 gives the angular momentum magnitude...Ch. 11 - Figure 11-29 shows a particle moving at constant...
Ch. 11 - A cannonball and a marble roll smoothly from rest...Ch. 11 - Prob. 12QCh. 11 - A car travels at 80 km/h on a level road in the...Ch. 11 - An automobile traveling at 80.0 km/h has tires of...Ch. 11 - Prob. 3PCh. 11 - A uniform solid sphere rolls down an incline. a...Ch. 11 - ILW A 1000 kg car has four 10 kg wheels. When the...Ch. 11 - Figure 11-30 gives the speed v versus time t for a...Ch. 11 - ILW In Fig. 11-31, a solid cylinder of radius 10cm...Ch. 11 - Figure 11-32 shows the potential energy Ux of a...Ch. 11 - GO In Fig. 11-33, a solid ball rolls smoothly from...Ch. 11 - A hollow sphere of radius 0.15 m, with rotational...Ch. 11 - In Fig. 11-34, a constant horizontal force Fapp of...Ch. 11 - GO In Fig. 11-35, a solid brass ball of mass 0.280...Ch. 11 - GO Nonuniform ball. In Fig. 11-36, a ball of mass...Ch. 11 - In Fig. 11-37, a small, solid, uniform ball is to...Ch. 11 - GO A bowler throws a bowling ball of radius R = 11...Ch. 11 - GO Nonuniform cylindrical object. In Fig. 11-39, a...Ch. 11 - SSM A yo-yo has a rotational inertia of 950 gcm2...Ch. 11 - Prob. 18PCh. 11 - In unit-vector notation, what is the net torque...Ch. 11 - A plum is located at coordinates 2.0 m, 0, 4.0 m....Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - A particle moves through an xyz coordinate system...Ch. 11 - Force F=(2.0N)i(3.0N)k acts on a pebble with...Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - SSM Force F=(8.0N)i+(6.0N)j acts on a particle...Ch. 11 - At the instant of Fig. 11-40, a 2.0 kg particle P...Ch. 11 - SSM At one instant, force F=4.0N acts on a 0.25 kg...Ch. 11 - A 2.0 kg particle-like object moves in a plant...Ch. 11 - ILW In the instant of Fig, 11-41, two particles...Ch. 11 - At the instant the displacement of a 2.00 kg...Ch. 11 - In Fig. 11-42, a 0.400 kg ball is shot directly...Ch. 11 - A particle is acted on by two torques about the...Ch. 11 - SSM WWW ILW At time t = 0, a 3.0 kg particle with...Ch. 11 - A particle is to move in an xy plane, clockwise...Ch. 11 - At time t, the vector r=4.0t2i(2.0t+6.0t2)j gives...Ch. 11 - Prob. 36PCh. 11 - GO In Fig. 11-44, three particles of mass m = 23 g...Ch. 11 - A sanding disk with rotational inertia 1.2 103...Ch. 11 - SSM The angular momentum of a flywheel having a...Ch. 11 - A disk with a rotational inertia of 7.00 kgm2...Ch. 11 - GO Figure 11-45 shows a rigid structure consisting...Ch. 11 - Figure 11-46 gives the torque that acts on an...Ch. 11 - Prob. 43PCh. 11 - A Texas cockroach of mass 0.17 kg runs...Ch. 11 - SSM WWW A man stands on a platform that is...Ch. 11 - The rotational inertia of a collapsing spinning...Ch. 11 - SSM A track is mounted on a large wheel that is...Ch. 11 - A Texas cockroach walks from the center of a...Ch. 11 - Two disks are mounted like a merry-go-round on...Ch. 11 - The rotor of an electric motor has rotational...Ch. 11 - SSM ILW A wheel is rotating freely at angular...Ch. 11 - GO A cockroach of mass m lies on the rim of a...Ch. 11 - GO In Fig. 11-50 an overhead view, a uniform thin...Ch. 11 - GO Figure 11-51 shows an overhead view of a ring...Ch. 11 - A horizontal vinyl record of mass 0.10 kg and...Ch. 11 - In a long jump, an athlete leaves the ground with...Ch. 11 - A uniform disk of mass 10m and radius 3.0r can...Ch. 11 - A horizontal platform in the shape of a circular...Ch. 11 - Figure 11-52 is an overhead view of a thin uniform...Ch. 11 - In Fig. 11-53, a 1.0 g bullet is tired into a 0.50...Ch. 11 - The uniform rod length 0.60 m, mass 1.0 kg in Fig....Ch. 11 - GO During a jump to his partner, an aerialist is...Ch. 11 - GO In Fig. 11-56, a 30 kg child stands on the edge...Ch. 11 - A ballerina begins a tour jet Fig. 11-19a with...Ch. 11 - SSM WWW Two 2.00 kg balls are attached to the ends...Ch. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - A certain gyroscope consists of a uniform disk...Ch. 11 - A uniform solid ball rolls smoothly along a floor,...Ch. 11 - SSM In Fig. 11-60, a constant horizontal force...Ch. 11 - A thin-walled pipe rolls along the floor. What is...Ch. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - A uniform block of granite in the shape of a book...Ch. 11 - SSM Two particles, each of mass 2.90 104 kg and...Ch. 11 - A wheel of radius 0.250 m, moving initially al...Ch. 11 - Wheels A and B in Fig. 11-61 are connected by a...Ch. 11 - Prob. 80PCh. 11 - SSM A uniform wheel of mass 10.0 kg and radius...Ch. 11 - A uniform rod rotates in a horizontal plane about...Ch. 11 - A solid sphere of weight 36.0 N rolls up an...Ch. 11 - Suppose that the yo-yo in Problem 17, instead of...Ch. 11 - A girl of mass M stands on the rim of a...Ch. 11 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardThe velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forward
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through one of its ends. Find the magnitude of the rodsangular momentum.arrow_forwardA playground merry-go-round with an axis at the center (radius R = 1.5 m and rotational inertia | = 1.33 x 103 kgm²) is initially rotating at angular velocity wo = 1.1 rad/s (counter-clockwise). A girl of mass m = 39 kg is running at speed vo = 3.3 m/s in a direction tangent to the disk of the merry-go-round, intending to jump on to the point labeled with the green "x" (she is indicated by the purple circle in the figure). What is the angular momentum of the girl relative to the rotation axis of the merry-go-round? Your answer should be in kgm²/s, but enter only the numerical part in the box. R Woarrow_forwardA small object with mass 3.95 kg moves counterclockwise with constant angular speed 1.65 rad/s in a circle of radius 3.45 m centered at the origin. It starts at the point with position vector 3.45î m. Then it undergoes an angular displacement of 8.55 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select-- Vat o (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) ° from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forward
- A girl of mass 32.8 kg stands on the rim of a frictionless merry-go-round of radius 1.28 m and rotational inertia 433 kg-m? that is not moving. She throws a rock of mass 894 g horizontally in a direction that is tangent to the outer edge of the merry-go-round. The speed of the rock, relative to the ground, is 2.68 m/s. Afterward, what are (a) the angular speed of the merry-go-round and (b) the linear speed of the girl? (a) Number i Units (b) Number i Unitsarrow_forwardA small object with mass 3.65 kg moves counterclockwise with constant speed 1.40 rad/s in a circle of radius 2.80 m centered at the origin. It starts at the point with position vector 2.80î m. Then it undergoes an angular displacement of 8.55 rad. (a) What is its new position vector? (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select-- at (c) What is its velocity? m/s (d) In what direction is it moving? 'from the +x direction. (e) What is its acceleration? m/s2 (f) Make a sketch of its position, velocity, and acceleration vectors. ls susl lalslae d This answer has not been graded yet. (g) What total force is exerted on the object?arrow_forwardProblem 4 : A hammer thrower accelerates the hammer (mass = 7.00 kg ) from rest within four full turns (revolutions) and releases it at a speed of 27.0 m/s . Part A Assuming a uniform rate of increase in angular velocity and a horizontal circular path of radius 1.00 m , calculate the angular and (linear) tangential acceleration. Ignore gravity. Part C Assuming a uniform rate of increase in angular velocity and a horizontal circular path of radius 1.00 m , calculate the centripetal acceleration just before release. Ignore gravity. Part D Assuming a uniform rate of increase in angular velocity and a horizontal circular path of radius 1.00 m , calculate the net force being exerted on the hammer by the athlete just before release. Ignore gravity. Part E Assuming a uniform rate of increase in angular velocity and a horizontal circular path of radius 1.00 m , calculate the angle of this force with respect to the radius of the circular motion. Ignore gravity.arrow_forward
- A small object with mass 4.15 kg moves counterclockwise with constant angular speed 1.30 rad/s in a circle of radius 3.30 m centered at the origin. It starts at the point with position vector 3.301 m. Then it undergoes an angular displacement of 9.30 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select--- ✓ at (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) • from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forwardA bicycle tire is spinning clockwise at 2.50 rad/s. During a time period Δt = 1.25 s, thetire is slopped and spun in the opposite (counterclockwise) direction, also at 2.50 rad/s.(Calculate (a) the change in the tire’s angular velocity Δω and (b) the tire's averageangular acceleration αav.arrow_forwardA girl of mass 20.3 kg stands on the rim of a frictionless merry-go-round of radius 1.29 m and rotational inertia 455 kg-m2 that is not moving. She throws a rock of mass 584 g horizontally in a direction that is tangent to the outer edge of the merry-go-round. The speed of the rock, relative to the ground, is 5.22 m/s. Afterward, what are (a) the angular speed of the merry-go-round and (b) the linear speed of the girl? (a) Number i Units (b) Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License