Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 11, Problem 13P
GO Nonuniform ball. In Fig. 11-36, a ball of mass M and radius R rolls smoothly from rest down a ramp and onto a circular loop of radius 0.48 m. The initial height of the ball is h = 0.36 m. At the loop bottom, the magnitude of the normal force on the ball is 2.00Mg. The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form I = βMR2, but β is not 0.4 as it is for a ball of uniform density. Determine β.
Figure 11-36 Problem 13.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please Asap
Nonuniform ball. a ball of mass M and radius R rolls smoothly from rest down a ramp and onto a circular loop of radius 0.48 m. The initial height of the ball is h =0.36 m. At the loop bottom, the magnitude of the normal force on the ball is 2.00Mg. The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form I = bMR2, but b is not 0.4 as it is for a ball of uniform density. Determine b.
A thin spherical shell of mass m and radius R rolls down a parabolic path PQR from a height H
without slipping. Part PQ is sufficiently rough while part QR is smooth. If the height reached by the
shell on the part QR be h, then h/H is given by (assume R < < H)
R
Chapter 11 Solutions
Fundamentals of Physics Extended
Ch. 11 - Figure 11-23 shows three particles of the same...Ch. 11 - Figure 11-24 shows two particles A and B at xyz...Ch. 11 - What happens to the initially stationary yo-yo in...Ch. 11 - The position vector r of a particle relative to a...Ch. 11 - In Fig. 11-26, three forces of the same magnitude...Ch. 11 - The angular momenta t of a particle in four...Ch. 11 - A rhinoceros beetle rides the rim of a horizontal...Ch. 11 - Figure 11-27 shows an overhead view of a...Ch. 11 - Figure 11-38 gives the angular momentum magnitude...Ch. 11 - Figure 11-29 shows a particle moving at constant...
Ch. 11 - A cannonball and a marble roll smoothly from rest...Ch. 11 - Prob. 12QCh. 11 - A car travels at 80 km/h on a level road in the...Ch. 11 - An automobile traveling at 80.0 km/h has tires of...Ch. 11 - Prob. 3PCh. 11 - A uniform solid sphere rolls down an incline. a...Ch. 11 - ILW A 1000 kg car has four 10 kg wheels. When the...Ch. 11 - Figure 11-30 gives the speed v versus time t for a...Ch. 11 - ILW In Fig. 11-31, a solid cylinder of radius 10cm...Ch. 11 - Figure 11-32 shows the potential energy Ux of a...Ch. 11 - GO In Fig. 11-33, a solid ball rolls smoothly from...Ch. 11 - A hollow sphere of radius 0.15 m, with rotational...Ch. 11 - In Fig. 11-34, a constant horizontal force Fapp of...Ch. 11 - GO In Fig. 11-35, a solid brass ball of mass 0.280...Ch. 11 - GO Nonuniform ball. In Fig. 11-36, a ball of mass...Ch. 11 - In Fig. 11-37, a small, solid, uniform ball is to...Ch. 11 - GO A bowler throws a bowling ball of radius R = 11...Ch. 11 - GO Nonuniform cylindrical object. In Fig. 11-39, a...Ch. 11 - SSM A yo-yo has a rotational inertia of 950 gcm2...Ch. 11 - Prob. 18PCh. 11 - In unit-vector notation, what is the net torque...Ch. 11 - A plum is located at coordinates 2.0 m, 0, 4.0 m....Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - A particle moves through an xyz coordinate system...Ch. 11 - Force F=(2.0N)i(3.0N)k acts on a pebble with...Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - SSM Force F=(8.0N)i+(6.0N)j acts on a particle...Ch. 11 - At the instant of Fig. 11-40, a 2.0 kg particle P...Ch. 11 - SSM At one instant, force F=4.0N acts on a 0.25 kg...Ch. 11 - A 2.0 kg particle-like object moves in a plant...Ch. 11 - ILW In the instant of Fig, 11-41, two particles...Ch. 11 - At the instant the displacement of a 2.00 kg...Ch. 11 - In Fig. 11-42, a 0.400 kg ball is shot directly...Ch. 11 - A particle is acted on by two torques about the...Ch. 11 - SSM WWW ILW At time t = 0, a 3.0 kg particle with...Ch. 11 - A particle is to move in an xy plane, clockwise...Ch. 11 - At time t, the vector r=4.0t2i(2.0t+6.0t2)j gives...Ch. 11 - Prob. 36PCh. 11 - GO In Fig. 11-44, three particles of mass m = 23 g...Ch. 11 - A sanding disk with rotational inertia 1.2 103...Ch. 11 - SSM The angular momentum of a flywheel having a...Ch. 11 - A disk with a rotational inertia of 7.00 kgm2...Ch. 11 - GO Figure 11-45 shows a rigid structure consisting...Ch. 11 - Figure 11-46 gives the torque that acts on an...Ch. 11 - Prob. 43PCh. 11 - A Texas cockroach of mass 0.17 kg runs...Ch. 11 - SSM WWW A man stands on a platform that is...Ch. 11 - The rotational inertia of a collapsing spinning...Ch. 11 - SSM A track is mounted on a large wheel that is...Ch. 11 - A Texas cockroach walks from the center of a...Ch. 11 - Two disks are mounted like a merry-go-round on...Ch. 11 - The rotor of an electric motor has rotational...Ch. 11 - SSM ILW A wheel is rotating freely at angular...Ch. 11 - GO A cockroach of mass m lies on the rim of a...Ch. 11 - GO In Fig. 11-50 an overhead view, a uniform thin...Ch. 11 - GO Figure 11-51 shows an overhead view of a ring...Ch. 11 - A horizontal vinyl record of mass 0.10 kg and...Ch. 11 - In a long jump, an athlete leaves the ground with...Ch. 11 - A uniform disk of mass 10m and radius 3.0r can...Ch. 11 - A horizontal platform in the shape of a circular...Ch. 11 - Figure 11-52 is an overhead view of a thin uniform...Ch. 11 - In Fig. 11-53, a 1.0 g bullet is tired into a 0.50...Ch. 11 - The uniform rod length 0.60 m, mass 1.0 kg in Fig....Ch. 11 - GO During a jump to his partner, an aerialist is...Ch. 11 - GO In Fig. 11-56, a 30 kg child stands on the edge...Ch. 11 - A ballerina begins a tour jet Fig. 11-19a with...Ch. 11 - SSM WWW Two 2.00 kg balls are attached to the ends...Ch. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - A certain gyroscope consists of a uniform disk...Ch. 11 - A uniform solid ball rolls smoothly along a floor,...Ch. 11 - SSM In Fig. 11-60, a constant horizontal force...Ch. 11 - A thin-walled pipe rolls along the floor. What is...Ch. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - A uniform block of granite in the shape of a book...Ch. 11 - SSM Two particles, each of mass 2.90 104 kg and...Ch. 11 - A wheel of radius 0.250 m, moving initially al...Ch. 11 - Wheels A and B in Fig. 11-61 are connected by a...Ch. 11 - Prob. 80PCh. 11 - SSM A uniform wheel of mass 10.0 kg and radius...Ch. 11 - A uniform rod rotates in a horizontal plane about...Ch. 11 - A solid sphere of weight 36.0 N rolls up an...Ch. 11 - Suppose that the yo-yo in Problem 17, instead of...Ch. 11 - A girl of mass M stands on the rim of a...Ch. 11 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardA wheel 2.00 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3 with the horizontal at this time. At t = 2.00 s, find (a) the angular speed of the wheel and, for point P, (b) the tangential speed, (c) the total acceleration, and (d) the angular position.arrow_forwardProblem 1: A uniform sphere of mass m and radius r is projected along a rough horizontal surface with a linear velocity vo. The coefficient of kinetic friction between the sphere and the surface is µ. Determine (a) the work done by friction force on the sphere until the time t, at which the sphere will start rolling without sliding, and (b) calculate the total kinetic energy of the sphere at instants t=0 and t=t:{T = Translation +Trotation =mv3 +÷low²}. (c) Is the change in total kinetic energy equal to the work done by the friction force in the time interval [0, t,]? (d) Will there be friction between the sphere and the horizontal surface after the instant t=t,? Explain why. Note: Do NOT use D'Alembert's Principle.arrow_forward
- Nonuniform ball. In the figure, a ball of mass M and radius R rolls smoothly from rest down a ramp and onto a circular loop of radius 0.48 m. The initial height of the ball is h = 0.37 m. At the loop bottom, the magnitude of the normal force on the ball is 2.0 Mg. The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form 1 = BMR2, but 3 is not 0.4 as it is for a ball of uniform density. Determine 3. Number Unitsarrow_forwardNonuniform ball. In the figure, a ball of mass M and radius R rolls smoothly from rest down a ramp and onto a circular loop of radius 0.47 m. The initial height of the ball is h = 0.39 m. At the loop bottom, the magnitude of the normal force on the ball is 2.0 Mg. The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form 1 = BMR2, but 3 is not 0.4 as it is for a ball of uniform density. Determine 3. Number i eTextbook and Media Unitsarrow_forwardA thin spherical shell of mass m and radius R rolls down a parabolic path PQR from a height H without slipping. Pary PQ is rough while part QR is smooth. If the height reached by the shell on the part QR is h then h/H is?arrow_forward
- A vertical disk of radius r rolls around a horizontal track of radius R which, itself, rotates at a constant rate Ohm_0 about a vertical axis. The center of the disk moves at a constant angular rate phi_0 about the same vertical axis. Using the given cylindrical unit vector system, obtain the acceleration of point P on the edge of the disk when this point is at its highest position.arrow_forwardA small, spherical asteroid of mass 6500000 kg and radius 7.6 m is stationary. The unsuspecting space rock is tangentially impacted by a Tesla roadster (mass 1320 kg) going 119000 km/h. In the following questions, assume the asteroid is uniform density and the coordinate system is set at the center of the asteroid, with the z direction aligned with its rotation axis post-impact. a) What is the magnitude of the car's linear momentum? IP carl | carl = b) What is the magnitude of the angular momentum of the car relative to the rotation axis of the asteroid just before impact? wf = kg m/s = kg m²/s c) After impact, assume the car sticks to the side of the asteroid, and treat it as a point mass. If angular momentum is conserved, what is the final angular velocity of the asteroid? rad/sarrow_forwardA block of mass M with a semicircular track of radius R, rests on a horizontal frictionless surface. A uniform cylinder of radius r and mass m is released from rest at the top point A (see fig.). The cylinder slips on the semicircular frictionless track. (a) How far has the block moved when the cylinder reaches the bottom (point B) of the track ? (b) How fast is the block moving when the cylinder reaches the bottom of the track? 105 100 gubwe A А m ck?) I noites R ITIS IS M B A min yd snobarrow_forward
- Nonuniform ball. In the figure, a ball of mass M and radius R rolls smoothly from rest down a ramp and onto a circular loop of radius 0.51 m. The initial height of the ball is h = 0.40 m. At the loop bottom, the magnitude of the normal force on the ball is 1.95M.. The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form I = BMR2, but B is not 0.4 as it is for a ball of uniform density. Determine B.arrow_forwardIn the figure, a small block of mass m = 0.037 kg can slide along the frictionless loop-the-loop, with loop radius R = 17 cm. The block is released from rest at point P, at height h = 5R above the bottom of the loop. What are the magnitudes of (a) the horizontal component and (b) the vertical component of the net force acting on the block at point Q? (c) At what height h should the block be released from rest so that it is on the verge of losing contact with the track at the top of the loop? (On the verge of losing contact means that the normal force on the block from the track has just then become zero).arrow_forwardA solid ball of radius R = 0.1 m and mass M = 4 kg is placed at the top of a ramp of height h 5 m and 0 = 53°. If the coefficient of kinetic friction (u) between the ball and the ramp surface is 0.1 and it is known that the ball does not roll smoothly down the ramp (there is sliding), calculate the velocity of the ball's center of mass (v com ) at the bottom of the ramp. (Your result must be in units of m /s and include 2 digit after the decimal point. Maximum of 3% of error is accepted in your answer. Take g = 9.8 m / ?.) (Hint: I =MR)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License