Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 28P
A 2.0 kg particle-like object moves in a plant with velocity components vx = 30m/s and vy = 60 m/s as it passes through the point with (x, y) coordinates of (3.0, −4.0) m. Just then, in unit-vector notation, what is its
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle of mass 4.4 kg has position vector r= (1.9î – 3.4j) m at a particular instant of time when its velocity is v = (3.4î) m/s with respect to the origin. (Express your answers in
vector form.)
(a) What is the angular momentum of the particle (in kg - m/s)?
kg - m2/s
(b) If a force F = 5.3j N acts on the particle at this instant, what is the torque (in N- m) about the origin?
N- m
A particle of mass 6.2 kg has position vector r =
(2.2î – 3.4j) m at a particular instant of time when its velocity is v = (2.6î) m/s with respect to the origin. (Express your answers in vector form.)
(a) What is the angular momentum of the particle (in kg · m/s)?
kg · m²/s
(b) If a force F = 4.4ĵ N acts on the particle at this instant, what is the torque (in N · m) about the origin?
N: m
Momentum, P = (2.0 kg m/sec)î – (7.0 kg m/sec)ĵ acts on
a particle with position vector 7 = (3.0 m)î – (1.0 m)ĵ.
If ř and P are working in Y and – Z direction respectively,
what would be the direction of Angular momentum, L.
Chapter 11 Solutions
Fundamentals of Physics Extended
Ch. 11 - Figure 11-23 shows three particles of the same...Ch. 11 - Figure 11-24 shows two particles A and B at xyz...Ch. 11 - What happens to the initially stationary yo-yo in...Ch. 11 - The position vector r of a particle relative to a...Ch. 11 - In Fig. 11-26, three forces of the same magnitude...Ch. 11 - The angular momenta t of a particle in four...Ch. 11 - A rhinoceros beetle rides the rim of a horizontal...Ch. 11 - Figure 11-27 shows an overhead view of a...Ch. 11 - Figure 11-38 gives the angular momentum magnitude...Ch. 11 - Figure 11-29 shows a particle moving at constant...
Ch. 11 - A cannonball and a marble roll smoothly from rest...Ch. 11 - Prob. 12QCh. 11 - A car travels at 80 km/h on a level road in the...Ch. 11 - An automobile traveling at 80.0 km/h has tires of...Ch. 11 - Prob. 3PCh. 11 - A uniform solid sphere rolls down an incline. a...Ch. 11 - ILW A 1000 kg car has four 10 kg wheels. When the...Ch. 11 - Figure 11-30 gives the speed v versus time t for a...Ch. 11 - ILW In Fig. 11-31, a solid cylinder of radius 10cm...Ch. 11 - Figure 11-32 shows the potential energy Ux of a...Ch. 11 - GO In Fig. 11-33, a solid ball rolls smoothly from...Ch. 11 - A hollow sphere of radius 0.15 m, with rotational...Ch. 11 - In Fig. 11-34, a constant horizontal force Fapp of...Ch. 11 - GO In Fig. 11-35, a solid brass ball of mass 0.280...Ch. 11 - GO Nonuniform ball. In Fig. 11-36, a ball of mass...Ch. 11 - In Fig. 11-37, a small, solid, uniform ball is to...Ch. 11 - GO A bowler throws a bowling ball of radius R = 11...Ch. 11 - GO Nonuniform cylindrical object. In Fig. 11-39, a...Ch. 11 - SSM A yo-yo has a rotational inertia of 950 gcm2...Ch. 11 - Prob. 18PCh. 11 - In unit-vector notation, what is the net torque...Ch. 11 - A plum is located at coordinates 2.0 m, 0, 4.0 m....Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - A particle moves through an xyz coordinate system...Ch. 11 - Force F=(2.0N)i(3.0N)k acts on a pebble with...Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - SSM Force F=(8.0N)i+(6.0N)j acts on a particle...Ch. 11 - At the instant of Fig. 11-40, a 2.0 kg particle P...Ch. 11 - SSM At one instant, force F=4.0N acts on a 0.25 kg...Ch. 11 - A 2.0 kg particle-like object moves in a plant...Ch. 11 - ILW In the instant of Fig, 11-41, two particles...Ch. 11 - At the instant the displacement of a 2.00 kg...Ch. 11 - In Fig. 11-42, a 0.400 kg ball is shot directly...Ch. 11 - A particle is acted on by two torques about the...Ch. 11 - SSM WWW ILW At time t = 0, a 3.0 kg particle with...Ch. 11 - A particle is to move in an xy plane, clockwise...Ch. 11 - At time t, the vector r=4.0t2i(2.0t+6.0t2)j gives...Ch. 11 - Prob. 36PCh. 11 - GO In Fig. 11-44, three particles of mass m = 23 g...Ch. 11 - A sanding disk with rotational inertia 1.2 103...Ch. 11 - SSM The angular momentum of a flywheel having a...Ch. 11 - A disk with a rotational inertia of 7.00 kgm2...Ch. 11 - GO Figure 11-45 shows a rigid structure consisting...Ch. 11 - Figure 11-46 gives the torque that acts on an...Ch. 11 - Prob. 43PCh. 11 - A Texas cockroach of mass 0.17 kg runs...Ch. 11 - SSM WWW A man stands on a platform that is...Ch. 11 - The rotational inertia of a collapsing spinning...Ch. 11 - SSM A track is mounted on a large wheel that is...Ch. 11 - A Texas cockroach walks from the center of a...Ch. 11 - Two disks are mounted like a merry-go-round on...Ch. 11 - The rotor of an electric motor has rotational...Ch. 11 - SSM ILW A wheel is rotating freely at angular...Ch. 11 - GO A cockroach of mass m lies on the rim of a...Ch. 11 - GO In Fig. 11-50 an overhead view, a uniform thin...Ch. 11 - GO Figure 11-51 shows an overhead view of a ring...Ch. 11 - A horizontal vinyl record of mass 0.10 kg and...Ch. 11 - In a long jump, an athlete leaves the ground with...Ch. 11 - A uniform disk of mass 10m and radius 3.0r can...Ch. 11 - A horizontal platform in the shape of a circular...Ch. 11 - Figure 11-52 is an overhead view of a thin uniform...Ch. 11 - In Fig. 11-53, a 1.0 g bullet is tired into a 0.50...Ch. 11 - The uniform rod length 0.60 m, mass 1.0 kg in Fig....Ch. 11 - GO During a jump to his partner, an aerialist is...Ch. 11 - GO In Fig. 11-56, a 30 kg child stands on the edge...Ch. 11 - A ballerina begins a tour jet Fig. 11-19a with...Ch. 11 - SSM WWW Two 2.00 kg balls are attached to the ends...Ch. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - A certain gyroscope consists of a uniform disk...Ch. 11 - A uniform solid ball rolls smoothly along a floor,...Ch. 11 - SSM In Fig. 11-60, a constant horizontal force...Ch. 11 - A thin-walled pipe rolls along the floor. What is...Ch. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - A uniform block of granite in the shape of a book...Ch. 11 - SSM Two particles, each of mass 2.90 104 kg and...Ch. 11 - A wheel of radius 0.250 m, moving initially al...Ch. 11 - Wheels A and B in Fig. 11-61 are connected by a...Ch. 11 - Prob. 80PCh. 11 - SSM A uniform wheel of mass 10.0 kg and radius...Ch. 11 - A uniform rod rotates in a horizontal plane about...Ch. 11 - A solid sphere of weight 36.0 N rolls up an...Ch. 11 - Suppose that the yo-yo in Problem 17, instead of...Ch. 11 - A girl of mass M stands on the rim of a...Ch. 11 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardA space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardA bird flies overhead from where you stand at an altitude of 300.0 m and at a speed horizontal to the ground of 20.0 m/s. The bird has a mass of 2.0 kg. The radius vector to the bird makes an angle with respect to the ground. The radius vector to the bird and its momentum vector lie in the xy-plane. What is the bird’s angular momentum about the point where you are standing?arrow_forward
- A 2.0-kg mass in the xy plane is moving in the negative x direction at 3.0 m/s along the line y= 5.0 m.As the mass passes across the y axis (i.e, passing the point (x,y = 0, 5.0 m )), what is its angular momentum with respect to the z axis?arrow_forwardA 1.91 kg particle-like object moves in a plane with velocity components vx = 78.6 m/s and vy = 91.3 m/s as it passes through the point with (x, y) coordinates of (1.15, -2.20) m. Just then, in unit-vector notation, what is its angular momentum relative to (a) the origin and (b) the point (-1.20, -1.20) m?arrow_forwardAn small particle of mass 3 Kg is traveling in the x-y plane. Its velocity is v = 5i + 4j m/s. When it is at the position (−3, 2), what is the particle’s angular momentum about the origin?arrow_forward
- = 30°. Force F of magnitude = 45° and a velocity vector v of magnitude 3.8 m/s and angle 02 At the instant of the figure, a 1.6 kg particle P has a position vector r of magnitude 1.7 m and angle 01 1.6 N and angle 03 = 30° acts on P. All three vectors lie in the xy plane. (Express your answers in vector form.) 03 (a) What is the angular momentum of the particle about the origin? kg · m2/s (b) What is the torque acting on the particle about the origin? デ= N: m Additional Materialsarrow_forwardMomentum, P = (2.0 kg m/sec)î – (7.0 kg m/sec)ĵ acts on a particle with position vector 7 = (3. 0 m)î – (1. 0 m)ĵ. What are the angular momentum on the particle about the origin, in unit vector notation and the angle between 7 and P? If ř and P are working in Y and – Z direction respectively, what would be the direction of force?arrow_forwardThree dimensions. Three point particles are fixed in place in an xyz coordinate system. Particle A, at the origin, has mass mA. Particle B, at xyz coordinates (2.00d, 2.00d, 2.00d), has mass 4.00mA, and particle C, at coordinates (–3.00d, 2.00d, –3.00d), has mass 4.00mA. A fourth particle D, with mass 3.00mA, is to be placed near the other particles. If distance d = 4.20 m, at what (a) x, (b) y, and (c) z coordinate should D be placed so that the net gravitational force on A from B, C, and D is zero?arrow_forward
- Three dimensions. Three point particles are fixed in place in an xyz coordinate system. Particle A, at the origin, has mass ma. Particle B, at xyz coordinates (3.00d, 1.00d, 3.00d), has mass 4.00ma, and particle C, at coordinates (-2.00d, 1.00d, -1.00d), has mass 2.00ma. A fourth particle D, with mass 3.00ma, is to be placed near the other particles. If distance d = 4.50 m, at what (a) x, (b) y, and (c) z coordinate should D be placed so that the net gravitational force on A from B, C, and D is zero? (a) Number Units (b) Number |Units (c) Number Unitsarrow_forwardA particle is at a position vector r = (x, y, z) = (1.0i, 2.0j, 3.0k) m. It is traveling with a velocity vector (-5.0, +2.8, -3.1) m/s. Its mass is 3.8 kg. What is its vector angular momentum about the origin.arrow_forwardIn (Figure 1), take m = 3.2 kg and mp = 4.6 kg. Figure 5 m 4 m 8 m/s 3 5 4 m 1.5 m MAA 0 1 2 m ↓ 4 m m MB B 30⁰arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License