Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 85P
A girl of mass M stands on the rim of a frictionless merry-go-round of radius R and rotational inertia I that is not moving. She throws a rock of mass m horizontally in a direction that is tangent to the outer edge of the merry-go-round. The speed of the rock, relative to the ground, is v. Afterward, what are (a) the angular speed of the merry-go-round and (b) the linear speed of the girl?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A playground ride consists of a disk of mass M = 48 kg and radius R = 2.2 m mounted on a low-friction axle. A child of mass m = 17 kg runs at
speed v = 2.7 m/s on a line tangential to the disk and jumps onto the outer edge of the disk.
m
V
M
R
A rod of length L=3.00 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A ball of mass m = 10.0 kg is attached to the other end. The rod is pulled aside to angle θ0 = 70° and released with initial velocity ? = 5.00 m/s. (a) What is the speed of the ball at the lowest point? (b) what is the speed of the ball when θ = 10°?
A rotating table (uniform disk) has a mass M and radius R, is constantly rotating at an
angular speed wo. Initially, a bug of mass m sits at the edge of the table. The total angular
(m+2m) R² wo
momentum of the system is L =
2
Now the bug walks and goes to the center of the table. What is the new angular speed of
the table? Did the angular momentum decrease, increase, or stay the same? (Answer both
questions and provide full solution of the problem).
Chapter 11 Solutions
Fundamentals of Physics Extended
Ch. 11 - Figure 11-23 shows three particles of the same...Ch. 11 - Figure 11-24 shows two particles A and B at xyz...Ch. 11 - What happens to the initially stationary yo-yo in...Ch. 11 - The position vector r of a particle relative to a...Ch. 11 - In Fig. 11-26, three forces of the same magnitude...Ch. 11 - The angular momenta t of a particle in four...Ch. 11 - A rhinoceros beetle rides the rim of a horizontal...Ch. 11 - Figure 11-27 shows an overhead view of a...Ch. 11 - Figure 11-38 gives the angular momentum magnitude...Ch. 11 - Figure 11-29 shows a particle moving at constant...
Ch. 11 - A cannonball and a marble roll smoothly from rest...Ch. 11 - Prob. 12QCh. 11 - A car travels at 80 km/h on a level road in the...Ch. 11 - An automobile traveling at 80.0 km/h has tires of...Ch. 11 - Prob. 3PCh. 11 - A uniform solid sphere rolls down an incline. a...Ch. 11 - ILW A 1000 kg car has four 10 kg wheels. When the...Ch. 11 - Figure 11-30 gives the speed v versus time t for a...Ch. 11 - ILW In Fig. 11-31, a solid cylinder of radius 10cm...Ch. 11 - Figure 11-32 shows the potential energy Ux of a...Ch. 11 - GO In Fig. 11-33, a solid ball rolls smoothly from...Ch. 11 - A hollow sphere of radius 0.15 m, with rotational...Ch. 11 - In Fig. 11-34, a constant horizontal force Fapp of...Ch. 11 - GO In Fig. 11-35, a solid brass ball of mass 0.280...Ch. 11 - GO Nonuniform ball. In Fig. 11-36, a ball of mass...Ch. 11 - In Fig. 11-37, a small, solid, uniform ball is to...Ch. 11 - GO A bowler throws a bowling ball of radius R = 11...Ch. 11 - GO Nonuniform cylindrical object. In Fig. 11-39, a...Ch. 11 - SSM A yo-yo has a rotational inertia of 950 gcm2...Ch. 11 - Prob. 18PCh. 11 - In unit-vector notation, what is the net torque...Ch. 11 - A plum is located at coordinates 2.0 m, 0, 4.0 m....Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - A particle moves through an xyz coordinate system...Ch. 11 - Force F=(2.0N)i(3.0N)k acts on a pebble with...Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - SSM Force F=(8.0N)i+(6.0N)j acts on a particle...Ch. 11 - At the instant of Fig. 11-40, a 2.0 kg particle P...Ch. 11 - SSM At one instant, force F=4.0N acts on a 0.25 kg...Ch. 11 - A 2.0 kg particle-like object moves in a plant...Ch. 11 - ILW In the instant of Fig, 11-41, two particles...Ch. 11 - At the instant the displacement of a 2.00 kg...Ch. 11 - In Fig. 11-42, a 0.400 kg ball is shot directly...Ch. 11 - A particle is acted on by two torques about the...Ch. 11 - SSM WWW ILW At time t = 0, a 3.0 kg particle with...Ch. 11 - A particle is to move in an xy plane, clockwise...Ch. 11 - At time t, the vector r=4.0t2i(2.0t+6.0t2)j gives...Ch. 11 - Prob. 36PCh. 11 - GO In Fig. 11-44, three particles of mass m = 23 g...Ch. 11 - A sanding disk with rotational inertia 1.2 103...Ch. 11 - SSM The angular momentum of a flywheel having a...Ch. 11 - A disk with a rotational inertia of 7.00 kgm2...Ch. 11 - GO Figure 11-45 shows a rigid structure consisting...Ch. 11 - Figure 11-46 gives the torque that acts on an...Ch. 11 - Prob. 43PCh. 11 - A Texas cockroach of mass 0.17 kg runs...Ch. 11 - SSM WWW A man stands on a platform that is...Ch. 11 - The rotational inertia of a collapsing spinning...Ch. 11 - SSM A track is mounted on a large wheel that is...Ch. 11 - A Texas cockroach walks from the center of a...Ch. 11 - Two disks are mounted like a merry-go-round on...Ch. 11 - The rotor of an electric motor has rotational...Ch. 11 - SSM ILW A wheel is rotating freely at angular...Ch. 11 - GO A cockroach of mass m lies on the rim of a...Ch. 11 - GO In Fig. 11-50 an overhead view, a uniform thin...Ch. 11 - GO Figure 11-51 shows an overhead view of a ring...Ch. 11 - A horizontal vinyl record of mass 0.10 kg and...Ch. 11 - In a long jump, an athlete leaves the ground with...Ch. 11 - A uniform disk of mass 10m and radius 3.0r can...Ch. 11 - A horizontal platform in the shape of a circular...Ch. 11 - Figure 11-52 is an overhead view of a thin uniform...Ch. 11 - In Fig. 11-53, a 1.0 g bullet is tired into a 0.50...Ch. 11 - The uniform rod length 0.60 m, mass 1.0 kg in Fig....Ch. 11 - GO During a jump to his partner, an aerialist is...Ch. 11 - GO In Fig. 11-56, a 30 kg child stands on the edge...Ch. 11 - A ballerina begins a tour jet Fig. 11-19a with...Ch. 11 - SSM WWW Two 2.00 kg balls are attached to the ends...Ch. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - A certain gyroscope consists of a uniform disk...Ch. 11 - A uniform solid ball rolls smoothly along a floor,...Ch. 11 - SSM In Fig. 11-60, a constant horizontal force...Ch. 11 - A thin-walled pipe rolls along the floor. What is...Ch. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - A uniform block of granite in the shape of a book...Ch. 11 - SSM Two particles, each of mass 2.90 104 kg and...Ch. 11 - A wheel of radius 0.250 m, moving initially al...Ch. 11 - Wheels A and B in Fig. 11-61 are connected by a...Ch. 11 - Prob. 80PCh. 11 - SSM A uniform wheel of mass 10.0 kg and radius...Ch. 11 - A uniform rod rotates in a horizontal plane about...Ch. 11 - A solid sphere of weight 36.0 N rolls up an...Ch. 11 - Suppose that the yo-yo in Problem 17, instead of...Ch. 11 - A girl of mass M stands on the rim of a...Ch. 11 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardA space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forward
- Why is the following situation impossible? A space station shaped like a giant wheel has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g (Fig. P10.52). A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a test to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening.arrow_forwardA long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forward
- A wheel 2.00 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3 with the horizontal at this time. At t = 2.00 s, find (a) the angular speed of the wheel and, for point P, (b) the tangential speed, (c) the total acceleration, and (d) the angular position.arrow_forwardA bird flies overhead from where you stand at an altitude of 300.0 m and at a speed horizontal to the ground of 20.0 m/s. The bird has a mass of 2.0 kg. The radius vector to the bird makes an angle with respect to the ground. The radius vector to the bird and its momentum vector lie in the xy-plane. What is the bird’s angular momentum about the point where you are standing?arrow_forwardZorch, an archenemy of Superman, decides to slow Earth's rotation to once per 29 h exerting a force parallel to the equator, opposing the rotation. He uses an old Saturn V Rocket, stolen for NASA, which was originally used to send astronauts to the Moon. This rocket can exert a thrust of F = 3.85 * 10^7 N a. If the original angular velocity of Earth is w initial and Zorch is trying to get the Earth to an angular velocity of w, how much time will it take him? Use M and R for the mass and radius of the Earth b. How long in seconds, will it take him to do this?arrow_forward
- As shown represents a small, flat puck with mass m = 2.40 kg sliding on a frictionless, horizontal surface. It is held in a circular orbit about a fixed axis by a rod with negligible mass and length R = 1.50 m, pivoted at one end. Initially, the puck has a speed of υ = 5.00 m/s. A 1.30-kg ball of putty is dropped vertically onto the puck from a small distance above it and immediately sticks to the puck. (a) What is the new period of rotation? (b) Is the angular momentum of the puck–putty system about the axis of rotation constant in this process? (c) Is the momentum of the system constant in the process of the putty sticking to the puck? (d) Is the mechanical energy of the system constant in the process?arrow_forwardThree dimensions. Three point particles are fixed in place in an xyz coordinate system. Particle A, at the origin, has mass ma. Particle B, at xyz coordinates (3.00d, 1.00d, 3.00d), has mass 4.00ma, and particle C, at coordinates (-2.00d, 1.00d, -1.00d), has mass 2.00ma. A fourth particle D, with mass 3.00ma, is to be placed near the other particles. If distance d = 4.50 m, at what (a) x, (b) y, and (c) z coordinate should D be placed so that the net gravitational force on A from B, C, and D is zero? (a) Number Units (b) Number |Units (c) Number Unitsarrow_forwardA horizontal circular platform rotates counterclockwise about its axis at the rate of 0.947 rad/s. You, with a mass of 65.7 kg, walk clockwise around the platform along its edge at the speed of 1.09 m/s with respect to the platform. Your 20.1 kg poodle also walks clockwise around the platform, but along a circle at half the platform's radius and at half your linear speed with respect to the platform. Your 17.9 kg mutt, on the other hand, sits still on the platform at a position that is 3/4 of the platform's radius from the center. Model the platform as a uniform disk with mass 91.1 kg and radius 1.95 m. Calculate the total angular momentum of the system. total angular momentum: kg · m?/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License