University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.56P
You are asked to design the decorative mobile shown in Fig. P11.56. The strings and rods have negligible weight, and the rods are to hang horizontally. (a) Draw a free-body diagram for each rod. (b) Find the weights of the balls A, B, and C. Find the tensions in the strings S1, S2, and S3. (c) What can you say about the horizontal location of the mobile’s center of gravity? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Shown are two thin beams joined at right angles. The vertical beam is 15.0 kg and 1.00 m long and the horizontal beam is 25.0 kg and 2.00 m long.a. Find the center of gravity of the two joined beams. Express your answer in the form (x, y), taking the origin at the corner where the beams join.b. Calculate the gravitational torque on the joined beams about an axis through the corner. The beams are seen from the side.
You are asked to design the decorative mobile shown in Figure P11.56 (See picture). The strings and rods have negligible weight, and the rods are to hang horizontally. a. Draw the free-body diagram for each rod. b. Find the weights A, B, C and the tension in the strings S1, S2 and S3.
Find the x - and y -coordinates of the center of gravity for the boomerang in Figure P8.12a. modeling the boomerang as in Figure P8.12b, where each uniform leg of the model has a length of 0.300 m and a mass of0.250 kg. (Note: Treat the legs like thin rods.)
Chapter 11 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 11.1 - Which situation satisfies both the first and...Ch. 11.2 - A rock is attached to the left end of a uniform...Ch. 11.3 - A metal advertising sign (weight w) for a...Ch. 11.4 - A copper rod of cross-sectional area 0.500 cm2 and...Ch. 11.5 - While parking your car, you accidentally back into...Ch. 11 - Does a rigid object in uniform rotation about a...Ch. 11 - (a) Is it possible for an object to be in...Ch. 11 - Prob. 11.3DQCh. 11 - Does the center of gravity of a solid body always...Ch. 11 - Prob. 11.5DQ
Ch. 11 - You are balancing a wrench by suspending it at a...Ch. 11 - You can probably stand flatfooted on the floor and...Ch. 11 - Prob. 11.8DQCh. 11 - An object consists of a ball of weight W glued to...Ch. 11 - Prob. 11.10DQCh. 11 - Prob. 11.11DQCh. 11 - In pioneer days, when a Conestoga wagon was stuck...Ch. 11 - The mighty Zimbo claims to have leg muscles so...Ch. 11 - Why is it easier to hold a 10-kg dumbbell in your...Ch. 11 - Certain features of a person, such as height and...Ch. 11 - During pregnancy, women often develop back pains...Ch. 11 - Why is a tapered water glass with a narrow base...Ch. 11 - Prob. 11.18DQCh. 11 - A uniform beam is suspended horizontally and...Ch. 11 - If a metal wire has its length doubled and its...Ch. 11 - A metal wire of diameter D stretches by 0.100 mm...Ch. 11 - Prob. 11.22DQCh. 11 - The material in human bones and elephant bones is...Ch. 11 - There is a small bui appreciable amount of elastic...Ch. 11 - When rubber mounting blocks are used to absorb...Ch. 11 - A 0.120-kg. 50.0-cm-long uniform bar has a small...Ch. 11 - Prob. 11.2ECh. 11 - A uniform rod is 2.00 m long and has mass 1.80 kg....Ch. 11 - A uniform 300-N trapdoor in a floor is hinged at...Ch. 11 - Raising a Ladder. A ladder carried by a fire truck...Ch. 11 - Two people are carrying a uniform wooden board...Ch. 11 - Two people carry a heavy electric motor by placing...Ch. 11 - A 60.0-cm. uniform. 50.0-N shelf is supported...Ch. 11 - A 350-N, uniform. 1.50-m bar is suspended...Ch. 11 - A uniform ladder 5.0 m long rests against a...Ch. 11 - A diving board 3.00 m long is supported at a point...Ch. 11 - A uniform aluminum beam 9.00 m long, weighing 300...Ch. 11 - Find the tension T in each cable and the magnitude...Ch. 11 - The horizontal beam in Fig. E11.14 weighs 190 N....Ch. 11 - The boom shown in Fig. E11.15 weighs 2600 N and is...Ch. 11 - Suppose that you can lift no more than 650 N...Ch. 11 - A 9.00-m-long uniform beam is hinged to a vertical...Ch. 11 - A 15,000-N crane pivots around a friction-free...Ch. 11 - A 3.00-m-long. 190-N, uniform rod at the zoo is...Ch. 11 - A nonuniform beam 4.50 m long and weighing 1.40 kN...Ch. 11 - A Couple. Two forces equal in magnitude and...Ch. 11 - BIO A Good Workout. You are doing exercises on a...Ch. 11 - BIO Neck Muscles. A student bends her head at 40.0...Ch. 11 - BIO Biceps Muscle. A relaxed biceps muscle...Ch. 11 - A circular steel wire 2.00 m long must stretch no...Ch. 11 - Two circular rods, one steel and the other copper,...Ch. 11 - A metal rod that is 4.00 m long and 0.50 cm2 in...Ch. 11 - Stress on a Mountaineers Rope. A nylon rope used...Ch. 11 - In constructing a large mobile, an artist hangs an...Ch. 11 - A vertical, solid steel post 25 cm in diameter and...Ch. 11 - BIO Compression of Human Bone. The bulk modulus...Ch. 11 - A solid gold bar is pulled up from the hold of the...Ch. 11 - A specimen of oil having an initial volume of 600...Ch. 11 - In the Challenger Deep of the Marianas Trench, the...Ch. 11 - A copper cube measures 6.00 cm on each side. The...Ch. 11 - A square steel plate is 10.0 cm on a side and...Ch. 11 - In lab tests on a 9.25-cm cube of a certain...Ch. 11 - A brass wire is to withstand a tensile force of...Ch. 11 - In a materials testing laboratory, a metal wire...Ch. 11 - A 4.0-m-long steel wire has a cross-sectional area...Ch. 11 - CP A steel cable with cross-sectional area 3.00...Ch. 11 - A door 1.00 m wide and 2.00 m high weighs 330 N...Ch. 11 - A box of negligible mass rests at the lett end of...Ch. 11 - Sir Lancelot rides slowly out of the castle at...Ch. 11 - Mountain Climbing. Mountaineers often use a rope...Ch. 11 - A uniform, 8.0-m, 1150-kg beam is hinged to a wall...Ch. 11 - A uniform, 255.N rod that is 2.00 m long carries a...Ch. 11 - A claw hammer is used to pull a nail out of a...Ch. 11 - You open a restaurant and hope to entice customers...Ch. 11 - End A of the bar AB in Fig. P11.50 rests on a...Ch. 11 - BIO Supporting a Broken Leg. A therapist tells a...Ch. 11 - A Truck on a Drawbridge. A loaded cement mixer...Ch. 11 - BIO Leg Raises. In a simplified version of the...Ch. 11 - BIO Pumping Iron. A 72.0-kg weightlifter doing arm...Ch. 11 - Prob. 11.55PCh. 11 - You are asked to design the decorative mobile...Ch. 11 - A uniform, 7.5-m-long beam weighing 6490 N is...Ch. 11 - CP A uniform drawbridge must be held at a 37 angle...Ch. 11 - BIO Tendon-Stretching Exercises. As part of an...Ch. 11 - (a) In Fig. P11.60 a 6.00-m-loog, uniform beam is...Ch. 11 - A uniform, horizontal flagpole 5.00 m long with a...Ch. 11 - A holiday decoration consists of two shiny glass...Ch. 11 - BIO Downward-Facing Dog. The yoga exercise...Ch. 11 - A uniform metal bar that is 8.00 m long and has...Ch. 11 - A worker wants to turn over a uniform. 1250-N,...Ch. 11 - One end of a uniform meter stick is placed against...Ch. 11 - Two friends are carrying a 200-kg crate up a...Ch. 11 - BIO Forearm. In the human arm, the forearm and...Ch. 11 - BIO CALC Refer to the discussion of holding a...Ch. 11 - In a city park a nonuniform wooden beam 4.00 m...Ch. 11 - You are a summer intern for an architectural firm....Ch. 11 - You are trying to raise a bicycle wheel of mass m...Ch. 11 - The Farmyard Gate. A gate 4.00 m wide and 2.00 m...Ch. 11 - If you put a uniform block at the edge of a table,...Ch. 11 - Two uniform, 75.0-g marbles 2.00 cm in diameter...Ch. 11 - Two identical, uniform beams weighing 260 N each...Ch. 11 - An engineer is designing a conveyor system for...Ch. 11 - A weight W is supported by attaching it to a...Ch. 11 - A garage door is mounted on an overhead rail (Fig....Ch. 11 - Pyramid Guilders. Ancient pyramid builders are...Ch. 11 - CP A 12.0-kg mass, fastened to the end of an...Ch. 11 - Hookes Law for a Wire. A wire of length l0 and...Ch. 11 - A 1.05-m-long rod of negligible weight is...Ch. 11 - CP An amusement park ride consists of...Ch. 11 - CP BIO Stress on the Shin Bone. The compressive...Ch. 11 - DATA You are to use a long, thin wire to build a...Ch. 11 - Prob. 11.87PCh. 11 - DATA You are a construction engineer working on...Ch. 11 - Two ladders, 4.00 m and 3.00 m long, are hinged at...Ch. 11 - Knocking Over a Post. One end of a post weighing...Ch. 11 - An angler hangs a 4.50-kg fish from a vertical...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...Ch. 11 - If he leans slightly farther back (increasing the...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
37. An insect 3.75 mm tall is placed 22.5 cm to the left of a thin planoconvex lens. The left surface of this l...
College Physics (10th Edition)
The change in the gravitational potential energy of the system.
Physics (5th Edition)
The speed of the wave.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Which of the two planets (Esus or Sulis) do you think will move around the central star in the least amount of ...
Lecture- Tutorials for Introductory Astronomy
Choose the best answer to etch of the following . Explain your reasoning. 2.Careful study of of community among...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The weight of the box is W = 90 N and the coefficient of static friction between the box and the floor is u0.65. Neglect the weights of the bars. What is the largest value of the force F that will not cause the box to slip?arrow_forwardConsider two geometrically identical marbles stacked in a container as shown. The radius of each of the marbles is R. while the width of the container is 2.9R. The marble at the top has a weight 0.78 N while the weight of the lower marble has a weight of 0.82 N. What is the magnitude of the normal force at point B? Express your answer in Newtons and with two decimal places. C А Вarrow_forwardConsider two geometrically identical marbles stacked in a container as shown. The radius of each of the marbles is R. while the width of the container is 2.9R The marble at the top has a weight 0.78 N while the weight of the lower marble has a weight of 0.84 N. What is the magnitude of the normal force at point B? Express your answer in Newtons and with two decimal places. C A Вarrow_forward
- A 24 kg rectangular 4.00 m x 3.00 m rectangular sign is suspended from a horizontal 6.00 m long rod with a 5 kg mass as indicated in the figure. The left end of the rod is supported by a hinge, and the right end is supported by a thin cable making a 30.0° angle with the vertical. Draw a free body diagram and calculate the tension T in the cable. The thin cable breaks if it is pulled by more than 200 N. Show than in the present situation the cable can not support the sign without breaking. Show the cable is able to support the load if it is attached higher up such that it makes an angle of 20.0° angle S0.0 CE CREAM SHOP with the vertical.arrow_forwardA bodybuilder holds a dumbbell of weight Wd. His arm is horizontal and weighs 47 N. The deltoid muscle is assumed to be the only muscle acting and is attached to the arm as shown. The maximum force M that the deltoid muscle can supply has a magnitude of 2481 N. The distances that locate where the various forces act on the arm. What is the weight of the heaviest dumbbell that can be held by the bodybuilder? Note: Express your answer in whole numbers. No unit is required for the final answer. M. ... r13.0° +y Wa 0.150 m 0.280 m +T 0.620 m (b) Free-body diagram of the arm M Deltoid Dumbbell 13.0 muscle Axis Shoulder joint (a) (c)arrow_forwardan Subject Pool em Department... esc L 7 A Z 199 2 W S 199 X X 8. The system shown in the following figure is in static equilibrium and the angle 8 = 34.0°. Given that the mass m₁ is 8.80 kg and the coefficient of static friction between mass m₁ and the surface on which it rests is 0.34, what is the minimum mass that m₂ can have for which the system will still remain in equilibrium? kg 3 80 E D C $ 4 888 F4 R cité ceito ceil6 cc116 cc116 116 ceifie F % 5 V T G 6 MacBook Air B Y & 7 m₂ H F7 U N 8 416 cc 16 cčil6 celic J D-II 1 ( 9 M m₂ K DD FO O O 16 ceil6 ceiló-collo c Parrow_forward
- rigid body staticsarrow_forwardTwo stacked blocks are pushed along a horizontal table. Force F' is applied horizontally to the 6m block as shown: Assume there is kinetic friction at the interface between the 6m block and the table, and static friction at the interface between the two blocks. If m = 4.3 kg, μ s= 0.57, and μ k= 0.34, what is the maximum force F' that can be exerted without the top block slipping? Express your answer in N, to at least one digit after the decimal point.arrow_forwardYour neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.00 × 10³ kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.40 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hCM = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μ = 0.780. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.) Narrow_forward
- Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.00 x 10³ kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.40 m. The center of mass of the car carrying five passengers is dcm = 2.25 m behind the front wheels and hCM = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μ = 0.780. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…arrow_forwardA drawbridge is 7 meters long, and is held in place at an angle of 50° bya horizontal chain as shown in the picture. The drawbridge has a massof 500 kg, and its center of mass is located 5 meters from the hinge. Thechain is attached to the drawbridge 6 meters from the hinge.a. Find the tension in the chain.b. Find the magnitude and direction of the force on the hinge.arrow_forwardAn outdoor chair is suspended from a tree by a single cable of length 1.5 m. The mass of the chair and the person sitting in it is a total of 85 kg. If someone pulls the chair through a horizontal distance of 80 cm and holds it there: a. What is the increase in the force exerted by the cable? b. How much sideways force must be exerted to hold the chair at that location?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY